摘要:
A video processing device may compare a pixel or group of pixels of a current video picture to a pixel or group of pixels of a previous video picture. The video processing device may generate a motion vector for the pixel or group of pixels of the current video picture based on the comparison. The video processing device may determine an amount of filtering to be applied to the pixel or group of pixels of the current video picture. The video processing device may adjust the determined amount of filtering to be applied to the pixel or group of pixels based on the generated motion vector and based on a brightness value.
摘要:
Described herein is a method and system for motion compensation. This system and method use confidence for motion vector selection. Relative cost and an estimate of noise power may be used to characterize residual values and influence confidence determination.
摘要:
Methods and systems for achieving high sub-pixel precision while processing a video signal are provided. Aspects of the method may include selecting IIR filter coefficients for implementing an IIR filter for filtering a video signal during scaling. Polyphase filter coefficients may be selected for implementing a polyphase filter for filtering the video signal during the scaling. The video signal may be filtered using a combination of the IIR filter having the selected IIR filter coefficients and the polyphase filter having the selected polyphase filter coefficients. The polyphase filter coefficients may implement a finite impulse response (FIR) filter for filtering the video signal. The video signal may be phase-shifted. The scaling of the video signal may comprise upscaling or downscaling the video signal. The video signal may be converted from a first format to a second format by combined IIR-filtering and polyphase filtering.
摘要:
Two consecutive interlaced video pictures of the same polarity or two consecutive progressive video pictures are read by a video processing system. The video pictures may comprise a current picture and a noise reduced reference picture. Motion and/or motion vectors may be estimated between the current and reference pictures by a motion compensated noise detector and/or a motion compensated temporal filter. A noise level sample may be determined for a pixel in the current picture based on a window of pixel data from the current picture and a window of motion compensated pixel data from the reference picture. One or more of a moving edge gradient value, a moving content value and a determined range of noise level values may be utilized to determine a valid noise sample. Noise level samples may be accumulated and a noise level may be determined for the current picture.
摘要:
In a data processing system, a method and system employing high fidelity inverse discrete cosine transform (IDCT) and discrete cosine transform (DCT) algorithms are provided. The values of the coefficients in a two-dimensional (2D) transform utilized in the IDCT and DCT algorithms may approximate the ideal integer output with sufficient visual quality. The transform coefficients may match a portion of the most significant bits (MSBs) or properly rounded bits of the coefficients of a reference transform matrix within an upper bound. The IDCT and DCT algorithms may specify constraints based on separating the 2D transform operation into two 1D transform operations in order to determine a minimum-bit width for each of the transform coefficients. The minimum-bit width may also be based on integer-bit precision of the data to be processed by the IDCT and DCT algorithms.
摘要:
Methods and systems for processing video information are disclosed herein and may comprise calculating a first two-field difference between a first plurality of pixels from a current field and a second plurality of corresponding pixels from an alternate field adjacent to the current field. At least one pixel from the current field may be deinterlaced based at least in part on the calculated first two-field difference. The first plurality of pixels and the second plurality of pixels may be aligned by adjusting a phase of at least one of the first plurality of pixels and the second plurality of pixels prior to the calculation of the first two-field difference. The first plurality of pixels may include a plurality of vertically adjacent pixels. The first plurality of pixels may comprise at least one luminance component. The alternate field may include a previous field and/or a next field. The first plurality of pixels and the second plurality of pixels may be filtered prior to the calculation of the first two-field difference.
摘要:
A system and method for decoding a digital video data stream. In one aspect, a plurality of hardware acceleration modules are used together with a core processor. The accelerators operate in a decoding pipeline wherein, in any given stage, each accelerator operates on a particular macroblock of video data. In the subsequent pipeline stage, each accelerator works on the next macroblock in the data stream, which was worked on by another one of the accelerators in the previous stage. The core processor polls all of the accelerators during each stage. When all accelerators finish their tasks for a given stage, the core processor initiates the next stage. In another aspect, two variable-length decoders are employed to simultaneously decode two macroblock rows of a video frame. Each variable-length decoder works to decode an assigned row and the rows are variable-length decoded in parallel. The variable-length decoders operate as part of a pipeline wherein the variable-length decoders alternate, stage-by-stage, decoding macroblocks.
摘要:
A method and system for content adaptive analog video noise detection are provided. A motion metric (MM) value, an edge detection value, and a content detection value may be determined for pixels in a video image. The MM values of pixels with edge detection values smaller than an edge threshold value and with content detection values smaller than a content threshold value may be collected and accumulated for a portion of the noise level intervals when the MM values fall in this interval. The MM values collected and accumulated may be utilized to determine an average noise level for each of the intervals. A noise level indicator (NLI) for the current video image may be determined based on the noise level of the current image or on the noise levels of the current and at least one previous video images.
摘要:
Two consecutive interlaced video pictures of the same polarity or two consecutive progressive video pictures are read by a video processing system. The video pictures may comprise a current picture and a noise reduced reference picture. Motion and/or motion vectors may be estimated between the current and reference pictures by a motion compensated noise detector and/or a motion compensated temporal filter. A noise level sample may be determined for a pixel in the current picture based on a window of pixel data from the current picture and a window of motion compensated pixel data from the reference picture. One or more of a moving edge gradient value, a moving content value and a determined range of noise level values may be utilized to determine a valid noise sample. Noise level samples may be accumulated and a noise level may be determined for the current picture.
摘要:
A video and graphics system provides square graphics pixels to blend images having 640×480 pixels, such as graphics images provided by some set top boxes and intended to be displayed at a 12.27 MHz display sample rate, with images having 704×480 pixels, such as ITU-R 601 compliant images such as NTSC SDTV images, having oblong pixels and displayed at a 13.5 MHz display sample rate. A sample rate converter including a multi-phase-multi-tap filter is used to generate square pixels. The multi-phase-multi-tap filter provides a good balance of sharpness, smoothness, anti-aliasing and reduced ringing. The multi-phase-multi-tap filter can also be used to convert images having 320×480 pixels to images having 704×480 pixels. The multi-tap filter can be used for scan rate conversion of graphics or video images for HDTV or SDTV applications.