Abstract:
The present disclosure discloses an optical film, a backlight module and a display device for a backlight module, and relates to a liquid crystal panel display technology field. The backlight module including: a light source emitting at least a first light; the optical film includes a light converting material which receives the first light and converts it into at least a second light exit such that the light emitting angle of the backlight module is greater than 120 degrees. In the above-described manner, the present disclosure enables the backlighting angle of the backlight module to be greater than 120 degrees, and the display device having the backlight module can be brought to a wide viewing angle effect.
Abstract:
The present application discloses a backlight module and a display device, the backlight module including a light source for emitting at least a first light; at least two sheets of light conversion films, wherein at least one sheet of light conversion films receives the first light and converts the light into at least a second light to emit, and makes the light emitting angle of the backlight module matching the wide viewing angle display requirements. It can increase the light emitting angle of the backlight module and achieve the wide viewing angle effect. By having at least two sheets of light conversion films at the same time, a part of the light is reflected back while the light is scattered and emitted at the same time, and the light is excited and emitted again, to improve the light utilization rate, enhance the brightness to have a better performance of display.
Abstract:
The present invention discloses a light guide plate, a backlight module and a display device. The light guide plate comprises a light conversion layer, the light conversion layer is arranged at a light emitting plane of the light guide plate for receiving a first light and converting the same to at least a second light to emit. According to the aforesaid aspect, the present invention can improve the display effect of the display device by making the emitted light have a better diffusivity and a larger brightness view angle.
Abstract:
A light conversion film for a backlight module, a backlight module and a display device are disclosed. The backlight module includes a light source that emits at least a first light; a light conversion film that receives the first light, converts the first light into a second light and emits the second light such that a light emission angle of the backlight module is greater than 120 degrees and a color temperature is less than 15000. The present invention can increase a brightness viewing angle to reach 120 degrees. Besides, the light conversion film has a higher light excitation efficiency, capable of decreasing the color temperature of the backlight module, and enhances the display effect.
Abstract:
A display device, an optical film and a manufacturing equipment thereof are provided. The optical film includes an optical layer. The optical layer includes: a first light-transmissive portion having mutually parallel light incident surface and light exit surface, and second light-transmissive portions distributed in the first light-transmissive portion. The first light-transmissive portion and the second light-transmissive portions have different refractive indexes. A contact surface of each of the second light-transmissive portions with the first light-transmissive portion includes an inclined surface neither parallel nor perpendicular to the light incident surface of the first light-transmissive portion, and at least a part of light rays perpendicularly incident from the light incident surface does not strike on the inclined surface and exits from the light exit surface. By the above solution, the invention can reduce image blurriness while enlarging viewing angle.
Abstract:
The invention provides an optical film assembly, a backlight module, and a display device. The backlight module includes a light source emitting at least a first light, a first optical film, and a second optical film laminated to the first optical film, wherein the first optical film includes a functional layer but does not include a base film, the functional layer is a diffusion film, a brightness enhancement film, a reflection film, or a prism film, and the second optical film is a light conversion layer, the light conversion layer receives the first light and converts the first light to at least a second light to emit, such that a light emission angle of the backlight module matches a requirement of wide viewing angle. The invention could broaden the light emitting angle of the backlight module to make the display device with the backlight module achieve wide viewing angle.
Abstract:
The invention provides an optical film assembly, a backlight module, and a display device. The backlight module includes a light source emitting at least a first light, a first optical film, and a second optical film laminated to the first optical film, wherein the first optical film includes a base film and a functional layer stacking up to the base film, the functional layer is a diffusion film, a brightness enhancement film, a reflection film, or a prism film, the second optical film is a light conversion layer, the light conversion layer receives the first light and converts the first light to a second light to emit, such that a light emission angle of the backlight module matches a requirement of wide viewing angle. The invention could broaden the light emitting angle of the backlight module to make the display device with the backlight module achieve wide viewing angle.
Abstract:
The disclosure provides a micro light-emitting diode display panel. The array substrate is arranged with a plurality of pixels in an array. Each of the pixels at least includes a subpixel of three colors. Each of the subpixels is disposed with at least one μLED chip corresponding to color of the subpixel. Bin levels of the μLED chips of the subpixels with the same color in two adjacent pixels are different and a difference of peak wavelengths >2 nm. The disclosure further provides a manufacturing method, the μLED chips with the corresponding color in the subpixel of the array substrate are transfer printed from the transfer printing plate to corresponding subpixels. The color and the bin level of the μLED chips in each transfer printing are identical. Bin levels of the μLED chips in the sub-pixels with the same color in two adjacent pixels are different.