Abstract:
Provided is an immersion diffraction element easily producible and capable of increasing the degrees of freedom in the design of a diffraction portion. An immersion diffraction element 1 includes a prism portion 2 and a diffraction portion 4, wherein the prism portion 2 and the diffraction portion 4 are made of amorphous glass.
Abstract:
A laminated diffraction optical element includes a substrate, and a resin layer provided on the substrate and including an optically effective portion and an optically non-effective outer portion adjacent to the optically effective portion. The optically non-effective outer portion in the resin layer has a continuous shape such that a layer thickness decreases when extending toward an outer periphery of the substrate. An angle formed between a straight line connecting both ends of the continuous shape and a tangent to a surface of the substrate at a point opposite to an end closer to the surface of the substrate is within a range of 20 to 60 degrees.
Abstract:
A method producing a refractive or diffractive optical device, including: production, in a first layer, of at least one inclined general profile approximated by a staircase profile including plural stairsteps; production of the profile including: forming buffer patterns on the first layer and at least one sequence including: forming masking patterns, so each masking pattern includes at least one edge situated above a buffer pattern and covers at least one area of the first layer not masked by the buffer patterns, the forming the masking patterns also defining, for the first layer, plural free areas not masked by the masking patterns or by the buffer patterns; etching the free areas to form trenches in the first layer. The production of the profile also includes: removing the masking patterns, removing the buffer patterns revealing walls previously covered by the buffer patterns, and then an isotropic etching to remove the walls.
Abstract:
A method for manufacturing a waveguide for a display apparatus comprising providing a planar optical waveguide part (20), depositing upon the optical waveguide part a fluid material (11) curable to form an optically transparent solid, impressing (30) upon the fluid material an impression defining an input diffraction grating region, an intermediate diffraction grating region and an output diffraction grating region wherein the fluid material of the intermediate diffraction grating region is continuous with the fluid material of at least the input diffraction grating region, curing (45) the impressed fluid material to solidify said impression. The physical location of the input diffraction grating is located wholly within the geographical area of the intermediate grating, and the grating vectors of the input diffraction grating and the intermediate diffraction grating are oriented in different respective directions.
Abstract:
Described are methods of forming large area templates useful for patterning large area optical devices including e.g. wire grid polarizers (WGPs). Such methods provide for seamless patterning of such large area devices.
Abstract:
A method for producing a mold includes: applying a block copolymer solution made of first and second polymers on a base member; performing a first annealing process at a temperature higher than Tg of the block copolymer after drying the coating film; forming a concavity and convexity structure on the base member by removing the second polymer by an etching process; performing a second annealing process of the concavity and convexity structure at a temperature higher than Tg of the first polymer; forming a seed layer on the structure; laminating or stacking a metal layer on the seed layer by an electroforming; and peeling off the metal layer from the base member. The second annealing process enables satisfactory transfer of a concavity and convexity structure on the base member onto the metal layer.
Abstract:
A method for producing a mold includes: applying a block copolymer solution made of first and second polymers on a base member; performing a first annealing process at a temperature higher than Tg of the block copolymer after drying the coating film; forming a concavity and convexity structure on the base member by removing the second polymer by an etching process; performing a second annealing process of the concavity and convexity structure at a temperature higher than Tg of the first polymer; forming a seed layer on the structure; laminating or stacking a metal layer on the seed layer by an electroforming; and peeling off the metal layer from the base member. The second annealing process enables satisfactory transfer of a concavity and convexity structure on the base member onto the metal layer.
Abstract:
A position detection apparatus includes an illumination optical system for illuminating a first diffraction grating having periods in each of a first direction and a second direction different from the first direction, and a second diffraction grating having a period different from the period in the second direction of the first diffraction grating in the second direction, at an oblique incidence, and a detection optical system for detecting diffracted light from the first diffraction grating and the second diffraction grating, wherein a relative position of the first diffraction grating and the second diffraction grating is detected based on the detected diffracted light, and wherein the illumination optical system includes a plurality of light intensity distributions in the first direction except for on an optical axis of the detection optical system, in a pupil plane thereof.
Abstract:
A method of manufacturing a blazed diffractive grating includes a first step of forming a first groove having a first surface and a second surface by moving, in the first direction at a first position in the second direction, a cutting tool having a first cutting blade and a second cutting blade to cut the object; a second step of forming a second groove by moving, in the first direction at a second position separated from the first position in the second direction by a grating pitch, the cutting tool to cut the object; and a third step of forming a blazed surface of the first groove using the first cutting blade by moving, in the first direction at a third position between the first position and the second position, the cutting tool to cut the first surface of the first groove.
Abstract:
A reflective diffraction grating and a fabrication method are provided. The reflective diffraction grating includes a substrate, a UV-absorbing layer, a grating layer having a binary surface-relief pattern formed therein, and a conforming reflective layer. Advantageously, the UV-absorbing layer absorbs light at a UV recording wavelength to minimize reflection thereof by the substrate during holographic patterning at the UV recording wavelength.