摘要:
A subtractor calculates an actual wheel speed difference between rotational speeds of left and right wheels on a motor vehicle, and a steering angle converter calculates an actual steering angle from the actual wheel speed difference. The difference between the actual steering angle and an adequate steering angle which is produced based on a lateral acceleration is compared with a predetermined reference range. If the difference between the actual and adequate steering angles exceeds the predetermined reference range, then the pneumatic pressure of a tire on one of the left and right wheels is determined as being lowered. In the steering angle converter, a weight value is established according to a running condition of the motor vehicle, and the calculated actual steering angle or comparative sensitivity is varied according to the weight value. Since the comparative sensitivity is varied according to the running condition, a reduction in the pneumatic pressure of the tire can be detected even under running conditions which lead to large errors.
摘要:
A method for determining the fully-closed state of a subsidiary throttle valve. If a stable state judging circuit judges that there is no outside influence exerted on the operational state of the engine (a state in which the vehicle is stopped and the engine is in an idling state) even if the subsidiary throttle valve is fully closed, a valve closing circuit closes the subsidiary throttle valve and a fully-closed state determination is carried out. If the opening degree of the subsidiary throttle valve or the engine revolution number is largely varied during the determination process of the fully-closed state determination circuit, a valve-closing inhibiting circuit inhibits the closing of the subsidiary throttle valve to discontinue the determination. Even if all of the conditions for determination are satisfied again, the closing of the subsidiary throttle valve and the restarting of determination by the fully-closed state determination circuit are inhibited until the comparator circuit judges that the vehicle starts traveling and vehicle speed exceeds a reference value.
摘要:
In a traction control device in which an initial control torque of an engine is determined in accordance with an acceleration of the vehicle, when an excessive slipping of driven wheels is detected, a time taken for proceeding of the excessive slipping of the driven wheels from a large slip state to a small slip state is counted by a timer. If such time is smaller than a reference time and a gear ratio of the vehicle is of a first gear shift to provide a low vehicle speed, it is decided that the vehicle is traveling on an upward sloping road, and a lower limit value for defining the initial control torque of the engine determined in an initial control torque calculating means is corrected into an increased value in an initial torque correcting means. This prevents the initial control torque of the engine from being excessively reduced at the start of a traction control. By this construction, it is possible to prevent an initial control torque from being excessively reduced due to a misjudgment of a friction coefficient of a surface of an upward or downward sloping road to insure an acceleratability of a vehicle.
摘要:
The rotational speed difference between rotational speeds of front and rear road wheels of a motor vehicle is weighted by a first ratio, and the difference between the rotational speed difference between rotational speeds of front left and right road wheels and an average signal of reference steering angle or between the rotational speed difference between rotational speeds of rear left and right road wheels and the average signal of reference steering angle is weighted by a second ratio. A sum signal representative of the sum of the rotational speed difference weighted by the first ratio and the difference weighted by the second ratio is used to determine a pneumatic tire pressure reduction highly accurately even when running conditions of the motor vehicle change such as when the motor vehicle makes a turn.
摘要:
A driving wheel slip control device has a prohibition determining device for determining a prohibition region in which an engine control operation such as fuel suspension or an ignition stop is carried out, and a prohibition device for prohibiting the engine control operation even if an excessive or abnormal slip is generated. Prevention of a resonance and an engine stall are realized in addition to an expansion of a slip control region.
摘要:
A cockpit is supported by a motion base in a state of being capable of making swinging movement. A host computer calculate vehicle motion information in accordance with operation of various operation equipments performed by a driver accommodated in the cockpit. A simulation image is formed, the cockpit is controlled for swinging movement, and various meters or the like in the cockpit are controlled on the basis of an obtained result of the calculation. Thus, the drive simulation is carried out in a state approximate to that of a real vehicle.
摘要:
A steering stability control system for a vehicle includes a turning state judging device for judging turning state of the vehicle to output an oversteering signal or an understeering signal, and a steering stability control device for controlling an output torque from an engine on the basis of an output from the turning state judging device. This system further includes a counter-steering judging device capable of judging a counter-steering state of the vehicle and causing the turning state judging device to output an oversteering signal when the counter-steering state is judged. Thus, it is possible to reliably judge the oversteering and the understeering during turning of the vehicle.
摘要:
A reduction in tire pressure in follower wheels and driven wheels is precisely determined irrespective of slipping states of the driven wheels through the use of apparatus wherein in a driven wheel slip amount calculating means M4 calculates a driven wheel slip amount KIDD as a left and right follower wheel speed difference FID and a left and right driven wheel speed difference RID; in a driven wheel torque calculating means M5, a driven wheel torque TQDW is calculated; in a driven wheel slip amount estimating means M6, a characteristic of variation in driven wheel slip amount KIDD relative to the variation in driven wheel torque TQDW is estimated using a least squares method; in a deviation calculating means M7, a deviation CKID between the follower wheel speed difference FID and the driven wheel speed difference RID in a state in which the driven wheels are not slipping, is calculated as an intercept of the driven wheel slip amount KIDD at a driven wheel torque equal to 0 (zero) in a graph of the variation characteristic; and in a wheel pressure-reduction determining means M8, a reduction in tire pressure is determined from a difference in diameter between the follower wheels and the driven wheels by comparing the deviation CKID with a reference value.
摘要:
A reduction in pressure in tires fitted to follower wheels and driven wheels is precisely determined irrespective of slipping states of the driven wheels. A driven wheel slip rate calculating means M1 calculates driven wheel slip rates .lambda.L and .lambda.R. A driven wheel torque calculating means M2 calculates a driven wheel torque TQDW. A driven wheel slip rate estimating means M4 estimates a characteristic of variation in driven wheel slip rates .lambda.L and .lambda.R relative to the variation in driven wheel torque TQDW using a least squares method. A rotation-number ratio calculating means M5 calculates ratios CVWL and CVWR of the numbers of rotations of the follower wheels to the numbers of rotations of the driven wheels in a state in which the driven wheel torque in a graph of the variation characteristic is equal to zero. A tire pressure-reduction determining means M6 then determines a reduction in pressure from a difference in diameter between the follower wheels and the driven wheels by comparing the rotation-number ratios CVWL and CVWR with a reference value.
摘要:
A system is provided to prevent suspension judder from being generated at the start of a vehicle which includes a traction control system. If the starting of the vehicle is detected based on driving-wheel speeds RL and RR, a shift position and an accelerator opening degree .theta.th1, an initial torque TQ2 and a delay time are map-searched based on the accelerator opening degree .theta.th1 and a steering angle .theta.st. The driving force for driven wheels is limited to the initial torque TQ2, until a delay time from the starting of the vehicle has elapsed, to prevent the generation of suspension judder. When the delay time has elapsed, an accelerating increment torque TQ3 is map-searched based on the accelerator opening degree .theta.th1 and the steering angle .theta.st, and is added to the initial torque TQ2, thereby ensuring the accelerating performance of the vehicle.