摘要:
Wavefront aberration of a projection optical system is measured and information on the wavefront aberration is obtained (step 102). Furthermore, a pattern of a reticle is transferred onto a wafer via a projection optical system (steps 104 to 108). Then, the waver on which the pattern is transferred is developed, and line width measurement is performed on the resist image formed on the wafer and line width difference of images of a first line pattern extending in a predetermined direction and a second line pattern that is orthogonal to the first line pattern is measured (steps 112 to 118). And, according to a value of the 12th term of the Zernike polynomial, which is an expansion of the wavefront aberration, and the line width difference, the projection optical system is adjusted so that magnitude of the 9th term (a low order spherical aberration term) is controlled (steps 120 to 124).
摘要:
When a pattern is transferred via a projection optical system, a size of an image of the pattern varies depending on a defocus amount of a transferring position from the best focus position, and a flucuation curve showing the variation (the so-called CD-focus curve) varies depending on wavefront aberration of the projection optical system. There is a close relation between a linear combination value of a plurality of terms that each have a coefficient (an aberration component) of a plurality of Zernike terms (aberration component terms) into which the wavefront aberration of the projection optical system is decomposed using a Zernike polynomial in series expansion, and the variation of the flucuation curve. Accordingly, by using the above relation, the CD-focus curve related to the pattern via a projection optical system whose aberration state is predetermined exposed under predetermined exposure conditions can be predicted within a short period of time by a simple calculation of obtaining the linear combination value of a plurality of terms that each have an aberration component.
摘要:
Wavefront aberration of a projection optical system is measured and information on the wavefront aberration is obtained (step 102). Furthermore, a pattern of a reticle is transferred onto a wafer via a projection optical system (steps 104 to 108). Then, the waver on which the pattern is transferred is developed, and line width measurement is performed on the resist image formed on the wafer and line width difference of images of a first line pattern extending in a predetermined direction and a second line pattern that is orthogonal to the first line pattern is measured (steps 112 to 118). And, according to a value of the 12th term of the Zernike polynomial, which is an expansion of the wavefront aberration, and the line width difference, the projection optical system is adjusted so that magnitude of the 9th term (a low order spherical aberration term) is controlled (steps 120 to 124).
摘要:
Wavefront aberration of a projection optical system is measured and information on the wavefront aberration is obtained (step 102). Furthermore, a pattern of a reticle is transferred onto a wafer via a projection optical system (steps 104 to 108). Then, the waver on which the pattern is transferred is developed, and line width measurement is performed on the resist image formed on the wafer and line width difference of images of a first line pattern extending in a predetermined direction and a second line pattern that is orthogonal to the first line pattern is measured (steps 112 to 118). And, according to a value of the 12th term of the Zernike polynomial, which is an expansion of the wavefront aberration, and the line width difference, the projection optical system is adjusted so that magnitude of the 9th term (a low order spherical aberration term) is controlled (steps 120 to 124).
摘要:
Wavefront aberration of a projection optical system is measured and information on the wavefront aberration is obtained (step 102). Furthermore, a pattern of a reticle is transferred onto a wafer via a projection optical system (steps 104 to 108). Then, the waver on which the pattern is transferred is developed, and line width measurement is performed on the resist image formed on the wafer and line width difference of images of a first line pattern extending in a predetermined direction and a second line pattern that is orthogonal to the first line pattern is measured (steps 112 to 118). And, according to a value of the 12th term of the Zernike polynomial, which is an expansion of the wavefront aberration, and the line width difference, the projection optical system is adjusted so that magnitude of the 9th term (a low order spherical aberration term) is controlled (steps 120 to 124).
摘要:
Disclosed is an environmental control apparatus for controlling a working environment in an exposure apparatus for effecting exposure using exposure light having a wavelength range in which oxygen absorbs the exposure light. The apparatus comprises an ozone removing filter for removing ozone in the air supplied to the exposure apparatus. By use of the environmental control apparatus of the present invention, ozone which is present in the air supplied to the exposure apparatus and absorbs the exposure light can be removed, so that a decrease in the amount of exposure light can be suppressed and hence, the amount of exposure light can be stabilized during exposure.
摘要:
Consumed energy is minimized to reduce running cost. Final formed products of uniform quality are successively obtained. High productivity is provided. A primary forming step of obtaining a primary formed product by plastically working a heated steel sheet with a primary forming die set for a predetermined time period, a secondary forming step of machining the primary formed product with the secondary forming die set for a predetermined time period to obtain a secondary formed product, and a hardening step of allowing a cooling die set placed in a hydraulic press controlled by a servomotor to hold the secondary formed product under pressure for a longer time period than the time period of each of the primary and secondary forming steps to obtain a hardened final formed product are successively performed in sequence. The hardening step is performed independently without coordinating with the primary and secondary forming steps.
摘要:
An exposure system comprises a first exposure apparatus having a first exposure field and a second exposure apparatus having a second exposure field larger than the first exposure field. A first shot map forming device is provided in the first exposure apparatus to form a first shot map by dividing an exposure region on a photosensitive substrate in units of first shot areas each corresponding to the first exposure field. A control unit transfers information on the first shot map to the second exposure apparatus. A second shot map forming device is provided in the second exposure apparatus to form a second shot map, based on the information on the first shot map, so that a number of shots becomes minimum when an exposure region including the first shot map on the photosensitive substrate is divided in units of second shot areas each corresponding to the second exposure field. A manufacturing method provides apparatus used in the exposure system.
摘要:
A projection exposure apparatus for transferring a pattern formed on a mask onto a photosensitive substrate by a scanning exposure method, includes a light source for generating a light beam having a predetermined spatial coherence, an illumination optical system for receiving the light beam from the light source and illuminating a local area on the mask with the light beam, and a device for synchronously moving the mask and the photosensitive substrate so as to transfer the pattern on the mask onto the photosensitive substrate. A direction, corresponding to a higher spatial coherence of the light beam, is made to coincide with the direction of relative scanning an illumination area and the mask in the illumination area.