摘要:
A combustion state-detecting system for internal combustion engines has a crank angle sensor which generates a crank angle signal with a predetermined period shorter than a firing period of the spark plug whenever the crankshaft rotates through a predetermined angle. A value of the rotational speed of the engine is detected whenever the crank angle signal is generated. A rate of variation in the detected value of the rotational speed of the engine is calculated over the firing period of the spark plug, and an average value thereof is then calculated. The calculated average value of the variation rate is compared with the calculated variation rate, and a cumulative value of a difference between the calculated variation rate average value and the calculated variation rate is calculated when the calculated variation rate is on the larger deceleration side of the engine rotational speed with respect to the calculated variation rate average value. The calculated difference cumulative value is compared with a predetermined value to determine whether or not the engine is in a degraded combustion state, based on the comparison result.
摘要:
A catalyst deterioration-determining system determines deterioration of a catalyst arranged in the exhaust passage of an internal combustion engine. An ECU is responsive to an output from an O.sub.2 sensor arranged upstream of the catalyst or outputs from O.sub.2 sensors arranged upstream and downstream of the catalyst for controlling the air-fuel ratio of a mixture supplied to the engine by means of an air-fuel ratio correction value (first air-fuel ratio control). When the engine is in a predetermined operating condition, the system effects changeover from the first air-fuel ratio control to a second air-fuel ratio control which is responsive to the output from the downstream O.sub.2 sensor for controlling the air-fuel ratio of the mixture by means of the air-fuel ratio correction value. After the changeover has been effected, a time period is measured which elapses from the time the second air-fuel ratio control causes a change in the air-fuel ratio correction value from a richer side to a leaner side or vice versa with respect to a stoichiometric air-fuel ratio to the time the output from the downstream O.sub.2 sensor is inverted from the richer side to the leaner side or vice versa with respect to the stoichiometric air-fuel ratio. It is determined that the catalyst is deteriorated, when the measured time period is shorter than the predetermined time period.
摘要:
A combustion state-detecting system, for internal combustion engines, has a crank angle sensor. The crank angle sensor generates a crank angle signal with a predetermined period shorter than a firing period of the engine whenever the crankshaft rotates through a predetermined angle. A value of the rotational speed of the engine is detected whenever the crank angle signal is generated. A first average value of the detected engine rotational speed is calculated over a period of one rotation of the crankshaft, followed by calculating a second average value of the first average value over every firing period, to thereby calculate a rate of variation in the second average value over every firing period. The rate of variation is compared with a predetermined value, to determine whether or not the engine is in a degraded state of combustion.
摘要:
A combustion state-detecting system for an internal combustion engine calculates a first average speed by averaging the rotational speed of the engine over a time period corresponding to duration of one stroke of a cylinder, and a second average speed by averaging the rotational speed of the engine over a time period corresponding to duration of one cycle of all strokes of the cylinder. The system calculates a difference between the first average speed and the second average speed, and determines based on the difference whether or not the combustion state of the engine is abnormal.
摘要:
A tank internal pressure-detecting device for an internal combustion engine having an evaporative emission control system for controlling purging of evaporative fuel generated in a fuel tank thereof into an intake system thereof. An ECU interrupts purging of evaporative fuel by the evaporative emission control system for a predetermined period of time after the engine is started. The ECU causes control valves of the evaporative emission control system to open the interior of the fuel tank to the atmosphere, and stores a value of pressure within the fuel tank detected by a tank internal pressure sensor as a reference value while the purging is being interrupted and at the same time the interior of the fuel tank is opened to the atmosphere. The ECU corrects an output value of the tank internal pressure sensor, based upon the reference value stored.
摘要:
A failure-detecting device detects failure of a tank internal pressure sensor for an internal combustion engine. The tank internal pressure sensor is provided in a fuel tank for detecting pressure within the fuel tank. The failure of the tank internal pressure sensor is detected by detecting an amount of variation in an output from the tank internal pressure sensor occurring within a predetermined time period elapses after the start of the engine and determining that the tank internal pressure sensor is abnormal when the amount of variation is below a predetermined value upon the lapse of the predetermined time period. A fail-safe device inhibits abnormality diagnosis of the evaporative emission control system when it is determined that the tank internal pressure sensor is abnormal. A fail-safe device performs a fail-safe action including at least opening a control valve arranged at an air inlet port of a canister for closing and opening the air inlet port, when it is determined that the tank internal pressure sensor is abnormal.
摘要:
A failure-detecting device detects failure of a tank internal pressure sensor for an internal combustion engine. The tank internal pressure sensor is provided in a fuel tank for detecting pressure within the fuel tank. The failure of the tank internal pressure sensor is detected by detecting an amount of variation in an output from the tank internal pressure sensor occurring within a predetermined time period elapses after the start of the engine and determining that the tank internal pressure sensor is abnormal when the amount of variation is below a predetermined value upon the lapse of the predetermined time period. A fail-safe device inhibits abnormality diagnosis of the evaporative emission control system when it is determined that the tank internal pressure sensor is abnormal. A fail-safe device performs a fail-safe action including at least opening a control valve arranged at an air inlet port of a canister for closing and opening the air inlet port, when it is determined that the tank internal pressure sensor is abnormal.
摘要:
A misfire detecting system for an internal combustion engine, including an intake pipe internal pressure detecting device for detecting an internal pressure of an intake pipe of the internal combustion engine, and a misfire detection inhibiting device for inhibiting the detection of misfire when the internal pressure of the intake pipe detected by the intake pipe internal pressure detecting device is lower than an intake pipe internal pressure in a no-load condition.
摘要:
An evaporative fuel processing system adapted to be capable of detecting abnormality of an evaporative emission control system for storing, in a canister, evaporative fuel from a fuel tank for holding fuel to be supplied to an internal combustion engine, and purging evaporative fuel into the intake system of the engine. A first control valve is arranged across a passage extending between the fuel tank and the canister. A second control valve is arranged across a passage extending between the canister and the intake system of the engine. A third control valve is provided for an air inlet part of the canister communicatable with the atmosphere. Through operating these control valves to open and close them, the evaporative emission control system is negatively pressurized, and abnormality of this system is detected based on the pressure detected in this negatively pressurized state thereof. Timing for carrying out abnormality determination is determined depending on conditions of the fuel tank. Before starting the whole process for abnormality diagnosis of the system evaporative fuel stored in the canister is allowed to be purged for a predetermined time period. When the temperature of fuel in the fuel tank exceeds a predetermined value, the abnormality determination is inhibited.
摘要:
A tank internal pressure-detecting device for an internal combustion engine having an evaporative emission control system for controlling purging of evaporative fuel generated in a fuel tank thereof into an intake system thereof. An ECU interrupts purging of evaporative fuel by the evaporative emission control system for a predetermined period of time after the engine is started. The ECU causes control valves of the evaporative emission control system to open the interior of the fuel tank to the atmosphere, and stores a value of pressure within the fuel tank detected by a tank internal pressure sensor as a reference value while the purging is being interrupted and at the same time the interior of the fuel tank is opened to the atmosphere. The ECU corrects an output value of the tank internal pressure sensor, based upon the reference value stored.