摘要:
A precharge circuit is provided between bit lines, on the one hand, and a power source potential on the other. The precharge circuit is controlled to be conductive/nonconductive by a clear signal. A control unit is also provided, which controls a decoder when the clear signal is supplied so as to set all the word lines in a selective state. In a clear mode, writing circuits write the same data simultaneously into all of the memory cells.
摘要:
The threshold voltage of bit line percharge/equalize MOS transistors is smaller than that of normally ON type bit line pull-up transistors. With this feature, there is no current flows through a bit line from power source V.sub.DD during a read-out operation. The voltage difference between a pair of bit lines can be increased at high speed, thereby increasing the read-out speed.
摘要:
There is disclosed a sense amplifier characterized by comprising a pull-up circuit. The pull-up circuit comprises a first transistor arranged between the first of a pair of output nodes and a pull-up power source potential node, and a second transistor arranged between the second of the pair of output nodes and the pull-up power source potential node. The gate of the first transistor is connected to the second output node and the gate of the second transistor is connected to the first output node.
摘要:
A static memory has an address transition detector, an input data transition detector and a pulse signal generator. When a detector detects that an input address or input data has changed, the pulse signal generator produces a pulse signal having a width longer than the shorter of the data-reading or data-writing cycle. This pulse signal controls the period of time during which a penetrating DC current flows between two power sources via some of the components of the memory.
摘要:
During a data-clearing operation, while maintaining in the OFF state the transfer gate transistors in each of the static type memory cells associated with at least one column, the source of one of two drive transistors incorporated in the memory cell is set to a high potential level, and the source of the other drive transistor to a low level. As a result, the clearing operation is performed to a minimum of 1 column in the memory cell matrix. Due to the arrangement of the memory device, no address-selecting operation is required for selecting a memory cell during the clearing operation. Moreover, the clearing operation is carried out in a minimum unit of 1 column in the memory cell matrix. Consequently, the processing time for the clearing operation is reduced. Furthermore, the DC current flowing during the clearing operation is reduced, since the transfer gate transistor in the memory cell is maintained in the OFF state during the clearing operation, with the result that the power consumption is lowered.
摘要:
In the semiconductor memory device according to the present invention, when there is a defective portion in the memory cells, those memory cells are replaced by redundant memory cells. When defective portions are discovered in the memory cells, the fuse elements corresponding to the memory cells having the defective portions are cut off. Voltages of the select lines connected to the memory cells having the defective portions are held at an L level by the resistors. Due to this, the memory cells having the defective portions are not selected.
摘要:
A transition detector circuit comprises a first invertor train comprising 2n stages of invertors (n: positive integer including zero), the input thereof being connected to a signal input terminal while the output thereof is connected to an in-phase output terminal, a second invertor train comprising 2n+1 stages of invertors, the input thereof being connected to the signal input terminal, while the output thereof is connected to an antiphase output terminal, a third invertor train comprising at least one stage of an invertor, which is connected to the output of the first invertor train, a fourth invertor train, comprising at least one stage of an invertor, which is connected to the output of the second invertor train, and a fifth invertor train comprising at least one stage of an invertor, which is connected to the signal input terminal. The transition detector circuit further comprises a first switching circuit which turns on or off in response to a signal fed from the third invertor train to produce a pulse signal having a first delay time determined by the first and third invertor trains, and a second switching circuit which turns on or off in response to a signal fed from the fourth invertor train and turns off or on in response to a signal fed from the fifth invertor train to produce a pulse signal having a second delay time determined by the second, fourth and fifth invertor trains.
摘要:
A GCU (21) includes calibration means (33) which supplies electric current to a glow plug (1) when an internal combustion engine EN to which the glow plug (1) is attached is stopped, to thereby obtain a pre-correction target resistance of the glow plug (1). The calibration means (33) supplies a predetermined first electric power to the glow plug (1) in a predetermined first energization period, and supplies a predetermined second electric power to the glow plug (1) after the first energization period. The second electric power is set such that, when the second electric power is supplied to the glow plug (1) and the temperature of the glow plug (1) becomes saturated, the temperature of the glow plug (1) becomes equal to the target temperature. Further, the first electric power is greater than the second electric power.
摘要:
A heater energization control apparatus. When an engine is stopped, a microcomputer of a GCU enters a power save mode. When the microcomputer returns to a normal mode in response to an interruption signal periodically generated from an interruption timer, the microcomputer supplies electricity to a heating resistor for a short time and obtains its resistance (S19). When the resistance is greater than a first reference value, the microcomputer determines that a glow plug is removed from the engine; that is, the glow plug is being exchanged (S29). The microcomputer sets an exchange flag to “1” (S30), and performs calibration for the heating resistor of a new glow plug after the engine is operated next time (S35). When the current resistance becomes smaller than the past resistance, the microcomputer determines that the glow plug has been exchanged.
摘要:
In a selected column, a pull-up transistor pair is not selected but, instead, a transmission gate transistor pair is selected. In the read mode, the transmission gate transistor pair serves as pull-up loads between the bit line pair. However, the transmission gate transistor pair is kept off until the voltage across the bit line pair is decreased from the power supply potential level to the threshold voltage level of the transmission gate transistors. Therefore, no DC current path is formed in the bit line pair when the voltage across the bit line pair is within a range from a voltage equal to the power supply potential level to a potential lower than the power supply potential by an amount equal to the threshold voltage level, and the rate of increase of a potential difference across the bit line pair is determined by a pull-in current of the memory cell. Therefore, a high-speed sense operation can be realized. In the write mode, the transmission gate transistor pair serves a bit line pull-up function. Since no normally-ON bit line load transistor is arranged, no direct current path including the bit line pair is present, and hence, low power consumption can be achieved.