Spatial-temporal regulation method for robust model estimation
    1.
    发明申请
    Spatial-temporal regulation method for robust model estimation 有权
    鲁棒模型估计的时空调节方法

    公开(公告)号:US20080056589A1

    公开(公告)日:2008-03-06

    申请号:US11516351

    申请日:2006-09-05

    IPC分类号: G06K9/36 G06K9/46

    CPC分类号: G06K9/036 G06K9/0014 G06K9/40

    摘要: A computerized spatial-temporal regulation method for accurate spatial-temporal model estimation receives a spatial temporal sequence containing object confidence mask. A spatial-temporal weight regulation is performed to generate weight sequence output. A weighted model estimation is performed using the spatial temporal sequence and the weight sequence to generate at least one model parameter output. An iterative weight update is performed to generate weight sequence output. A weighted model estimation is performed to generate estimation result output. A stopping criteria is checked and the next iteration iterative weight update and weighted model estimation is performed until the stopping criteria is met. A model estimation is performed to generate model parameter output. An outlier data identification is performed to generate outlier data output. A spatial-temporal data integrity check is performed and the outlier data is disqualified.

    摘要翻译: 用于精确空间 - 时间模型估计的计算机空间 - 时间调节方法接收包含对象置信掩模的空间时间序列。 执行空间 - 时间权重调节以产生权重序列输出。 使用空间时间序列和权重序列来执行加权模型估计,以生成至少一个模型参数输出。 执行迭代权重更新以产生权重序列输出。 执行加权模型估计以产生估计结果输出。 检查停止标准,并执行下一次迭代迭代权重更新和加权模型估计,直到满足停止标准。 执行模型估计以产生模型参数输出。 执行异常值数据识别以产生离群数据输出。 执行空间 - 时间数据完整性检查,异常值数据被取消资格。

    Spatial-temporal regulation method for robust model estimation
    2.
    发明授权
    Spatial-temporal regulation method for robust model estimation 有权
    鲁棒模型估计的时空调节方法

    公开(公告)号:US07974456B2

    公开(公告)日:2011-07-05

    申请号:US11516351

    申请日:2006-09-05

    IPC分类号: G06K9/00

    CPC分类号: G06K9/036 G06K9/0014 G06K9/40

    摘要: A computerized spatial-temporal regulation method for accurate spatial-temporal model estimation receives a spatial temporal sequence containing object confidence mask. A spatial-temporal weight regulation is performed to generate weight sequence output. A weighted model estimation is performed using the spatial temporal sequence and the weight sequence to generate at least one model parameter output. An iterative weight update is performed to generate weight sequence output. A weighted model estimation is performed to generate estimation result output. A stopping criteria is checked and the next iteration iterative weight update and weighted model estimation is performed until the stopping criteria is met. A model estimation is performed to generate model parameter output. An outlier data identification is performed to generate outlier data output. A spatial-temporal data integrity check is performed and the outlier data is disqualified.

    摘要翻译: 用于精确空间 - 时间模型估计的计算机空间 - 时间调节方法接收包含对象置信掩模的空间时间序列。 执行空间 - 时间权重调节以产生权重序列输出。 使用空间时间序列和权重序列来执行加权模型估计,以生成至少一个模型参数输出。 执行迭代权重更新以产生权重序列输出。 执行加权模型估计以产生估计结果输出。 检查停止标准,并执行下一次迭代迭代权重更新和加权模型估计,直到满足停止标准。 执行模型估计以产生模型参数输出。 执行异常值数据识别以产生离群数据输出。 执行空间 - 时间数据完整性检查,异常值数据被取消资格。

    Intelligent spatial reasoning
    3.
    发明授权
    Intelligent spatial reasoning 有权
    智能空间推理

    公开(公告)号:US07263509B2

    公开(公告)日:2007-08-28

    申请号:US10411437

    申请日:2003-04-09

    IPC分类号: G06F12/00 G06N5/02

    摘要: An intelligent spatial reasoning method receives a plurality of object sets. A spatial mapping feature learning method uses the plurality of object sets to create at least one salient spatial mapping feature output. It performs spatial reasoning rule learning using the at least one spatial mapping feature to create at least one spatial reasoning rule output. The spatial mapping feature learning method performs a spatial mapping feature set generation step followed by a feature learning step. The spatial mapping feature set is generated by repeated application of spatial correlation between two object sets. The feature learning method consists of a feature selection step and a feature transformation step and the spatial reasoning rule learning method uses the supervised learning method.The spatial reasoning approach of this invention automatically characterizes spatial relations of multiple sets of objects by comprehensive collections of spatial mapping features. Some of the features have clearly understandable physical, structural, or geometrical meanings. Others are statistical characterizations, which may not have clear physical, structural or geometrical meanings when considered individually. A combination of these features, however, could characterize subtle physical, structural or geometrical conditions under practical situations. One key advantage of this invention is the ability to characterize subtle differences numerically using a comprehensive feature set.

    摘要翻译: 智能空间推理方法接收多个对象集。 空间映射特征学习方法使用多个对象集来创建至少一个显着的空间映射特征输出。 它使用至少一个空间映射特征来执行空间推理规则学习以创建至少一个空间推理规则输出。 空间映射特征学习方法执行空间映射特征集生成步骤,随后是特征学习步骤。 通过重复应用两个对象集之间的空间相关性来生成空间映射特征集。 特征学习方法由特征选择步骤和特征变换步骤组成,空间推理规则学习方法采用监督学习方法。 本发明的空间推理方法通过空间映射特征的综合集合自动表征多组对象的空间关系。 一些功能具有明确的理解,物理,结构或几何意义。 其他是统计特征,当单独考虑时可能没有明确的物理,结构或几何意义。 然而,这些特征的组合可以在实际情况下表征微妙的物理,结构或几何条件。 本发明的一个关键优点是能够使用综合特征集在数值上表征微妙的差异。

    Structure-guided image inspection
    4.
    发明授权
    Structure-guided image inspection 有权
    结构导向图像检查

    公开(公告)号:US07076093B2

    公开(公告)日:2006-07-11

    申请号:US10247723

    申请日:2002-09-16

    IPC分类号: G06K9/00

    摘要: A structure-guided transformation transforms a region of an image into a region in the structure-transformed image according to the desired structure. The invention achieves efficient and accurate structure-guided processing such as filtering, detection and comparison in the transformed domain and thereby facilitates use of simple operations to enhance or detect straight lines or edges. Structure information is used to enhance and detect image features of interest even when the shape of the image structure is not regular. Both global and local structures of objects can be inspected. Global structure inspection detects gross errors in image structure; therefore side effects caused by mismatched structure-guided processing are avoided. Subtle defects along the edge of a structure can be detected by local structure inspection. Structure information guidance provides an edge detection inspection system that tolerates significant noise and contrast variations.

    摘要翻译: 结构引导变换根据期望的结构将图像的区域变换为结构变换图像中的区域。 本发明实现了有效和准确的结构引导处理,如变换域中的过滤,检测和比较,从而便于使用简单的操作来增强或检测直线或边缘。 即使当图像结构的形状不规则时,结构信息也用于增强和检测感兴趣的图像特征。 可以检查对象的全局和局部结构。 全局结构检查检测图像结构中的粗略错误; 因此避免了由错配的结构引导处理引起的副作用。 沿结构边缘的微小缺陷可以通过局部结构检查来检测。 结构信息指导提供了边缘检测检测系统,其容忍显着的噪声和对比度变化。

    Automatic detection of alignment or registration marks
    5.
    发明授权
    Automatic detection of alignment or registration marks 有权
    自动检测对准或对准标记

    公开(公告)号:US06842538B2

    公开(公告)日:2005-01-11

    申请号:US09815816

    申请日:2001-03-23

    CPC分类号: G06K9/4604

    摘要: Mark detection and position determination are improved by use of directional elongated filters, symmetry, gray scale image processing, structural constraints, and learning. Directional elongated filters are used to pre-process images of registration marks to create masks and enhanced images. Working sequentially, portions of the mark are detected and classified. The input gray scale image of the mark is processed using its structural constraints in conjunction with a mask for the detected mark. A cost function estimation determines mark position and orientation with sub-pixel accuracy. Learning is used to improve specific application performance.

    摘要翻译: 通过使用定向细长滤波器,对称性,灰度图像处理,结构约束和学习来提高标记检测和位置确定。 定向拉长过滤器用于预处理对准标记的图像以创建掩模和增强图像。 按顺序工作,对标记的部分进行检测和分类。 使用其结构约束结合用于检测标记的掩码来处理标记的输入灰度图像。 成本函数估计用子像素精度确定标记位置和方向。 学习用于提高特定的应用程序性能。

    High speed image processing apparatus using a cascade of elongated filters programmed in a computer
    6.
    发明授权
    High speed image processing apparatus using a cascade of elongated filters programmed in a computer 有权
    使用在计算机中编程的细长滤波器级联的高速图像处理装置

    公开(公告)号:US06404934B1

    公开(公告)日:2002-06-11

    申请号:US09692948

    申请日:2000-10-20

    IPC分类号: G06T520

    CPC分类号: G06T5/30

    摘要: A high speed image processing apparatus is created through the use of cascaded elongated filters. The processing speed of the filters is kernel size insensitive, enabling use of general purpose computing facilities to process high resolution, monochrome, and multi-spectrum images. Elongated filters described include both linear and non-linear filters. Very large kernel and multi-dimensional image processing is accomplished with reduced complexity and portable programming instructions.

    摘要翻译: 通过使用级联的细长过滤器创建高速图像处理装置。 过滤器的处理速度是内核大小不敏感的,可以使用通用计算机来处理高分辨率,单色和多光谱图像。 所描述的细长滤波器包括线性和非线性滤波器。 非常大的内核和多维图像处理通过降低的复杂性和便携式编程指令来实现。

    Method and apparatus for optimizing biological and cytological specimen screening and diagnosis
    7.
    发明授权
    Method and apparatus for optimizing biological and cytological specimen screening and diagnosis 失效
    用于优化生物学和细胞学标本筛选和诊断的方法和装置

    公开(公告)号:US06181811B2

    公开(公告)日:2001-01-30

    申请号:US09006457

    申请日:1998-01-13

    IPC分类号: G06K900

    CPC分类号: G06K9/00127

    摘要: A method and apparatus for optimizing biological and cytological specimen screening and diagnosis. A slide review process is recommended for cytological specimen screening to identify abnormal sub-populations for further review and also diagnosis by a human expert. An automated screener processes a cytological specimen. Using a slide score generated by the automated screener, a slide review process using a slide score classification is determined. The recommendation of slide review processes improves overall performance of the screening process as measured by sensitivity to abnormal specimens, and at the same time reduces the work load of a human reviewer. The system also effectively and smoothly integrates the process of initial screening of the specimen with the process of further review of the specimen and final diagnosis of the specimen.

    摘要翻译: 用于优化生物学和细胞学标本筛选和诊断的方法和装置。 推荐用于细胞学标本筛选的幻灯片审查过程,以识别异常亚群以供进一步审查,并由人类专家进行诊断。 自动筛选器处理细胞学标本。 使用由自动筛选器生成的幻灯片得分,确定使用幻灯片分数分类的幻灯片审阅过程。 幻灯片审查过程的推荐通过对异常标本的敏感度测量,提高了筛选过程的整体性能,同时降低了人类审阅者的工作量。 该系统还将样品初始筛选过程与样品进一步检查和样品的最终诊断过程进行了有效平滑的整合。

    Teachable object contour mapping for biology image region partition
    9.
    发明申请
    Teachable object contour mapping for biology image region partition 有权
    用于生物图像区域划分的可对象轮廓映射

    公开(公告)号:US20120106809A1

    公开(公告)日:2012-05-03

    申请号:US12925874

    申请日:2010-11-01

    IPC分类号: G06K9/00

    CPC分类号: G06K9/342 G06K9/0014

    摘要: A teachable object contour mapping method for region partition receives an object boundary and a teaching image. An object contour mapping recipe creation is performed using the object boundary and the teaching image to generate object contour mapping recipe output. An object contour mapping is applied to an application image using the object contour mapping recipe and the application image to generate object contour map output. An object region partition using the object contour map to generate object region partition output An updateable object contour mapping method receives a contour mapping recipe and a validation image. An object contour mapping is performed using the object contour mapping recipe and the validation image to generate validation contour map output. An object region partition receives a region mask to generate validation object region partition output. A boundary correction is performed using the validation object region partition to generate corrected object boundary output. An update contour mapping is performed using the corrected object boundary, the validation image and the contour mapping recipe to generate updated contour mapping recipe output.

    摘要翻译: 区域分区的可教对象轮廓映射方法接收对象边界和教学图像。 使用对象边界和教学图像执行对象轮廓映射配方创建,以生成对象轮廓映射配方输出。 使用对象轮廓映射配方和应用图像将对象轮廓映射应用于应用图像以生成对象轮廓图输出。 使用对象轮廓图生成对象区域分区输出的对象区域分区可更新对象轮廓映射方法接收轮廓映射配方和验证图像。 使用对象轮廓映射配方和验证图像执行对象轮廓映射以生成验证轮廓图输出。 对象区域分区接收区域掩码以生成验证对象区域分区输出。 使用验证对象区域分区执行边界校正,以生成校正对象边界输出。 使用校正的对象边界,验证图像和轮廓映射配方来执行更新轮廓映射以生成更新的轮廓映射配方输出。

    Method for kinetic characterization from temporal image sequence
    10.
    发明申请
    Method for kinetic characterization from temporal image sequence 审中-公开
    从时间图像序列的动力学表征方法

    公开(公告)号:US20110274339A1

    公开(公告)日:2011-11-10

    申请号:US13135711

    申请日:2011-07-13

    IPC分类号: G06K9/00

    CPC分类号: G06K9/00127 G06K2009/3291

    摘要: A computerized derivable kinetic characterization measurement method for live cell kinetic characterization inputs kinetic recognition data for a plurality of time frames. A single cell measurement step is performed using the kinetic recognition data for a plurality of time frames to generate single cell feature for a plurality of time frames output. The single cell feature includes cell morphological profiling feature. A kinetic measurement step uses the single cell feature for a plurality of time frames to generate kinetic feature output. A trajectory measurement step uses the single cell feature for a plurality of time frames and the kinetic feature to generate trajectory feature output. An interval measurement step uses the kinetic feature to generate interval feature output. A cell state classifier step uses the interval feature to generate cell state output. A state based measurement uses the single cell feature, the kinetic feature and the cell state to generate state based feature output.

    摘要翻译: 用于活细胞动力学特征的计算机可推导动力学表征测量方法输入多个时间帧的动力学识别数据。 使用多个时间帧的动力学识别数据来执行单个小区测量步骤,以生成多个时间帧输出的单个小区特征。 单细胞特征包括细胞形态分析特征。 动力学测量步骤使用多个时间帧的单细胞特征来产生动力特征输出。 轨迹测量步骤使用单个小区特征用于多个时间帧,并且所述动力特征生成轨迹特征输出。 间隔测量步骤使用动力学特征来产生间隔特征输出。 单元状态分类器步骤使用间隔特征来生成单元格状态输出。 基于状态的测量使用单细胞特征,动力学特征和细胞状态来产生基于状态的特征输出。