Alignment template goodness qualification method
    1.
    发明申请
    Alignment template goodness qualification method 审中-公开
    对齐模板善良鉴定方法

    公开(公告)号:US20060147105A1

    公开(公告)日:2006-07-06

    申请号:US11035867

    申请日:2005-01-05

    IPC分类号: G06K9/00

    摘要: An alignment template goodness qualification method receives a pattern image and a pattern based alignment template and performs template goodness measurement using the pattern image and the pattern based alignment template to generate template goodness result output. A template qualification is performed using the template goodness result to generate template qualification result output. If the template qualification result is acceptable, the pattern based alignment template is outputted as the qualified pattern based alignment template. Otherwise, an alternative template selection is performed using the pattern image, the pattern based alignment template and the template goodness result to generate alternative pattern based alignment template output. The template goodness measurements include signal content measurement, spatial discrimination measurement and pattern ambiguity measurement.

    摘要翻译: 对齐模板品质鉴定方法接收图案图像和基于图案的对准模板,并使用图案图像和基于图案的对准模板进行模板优良度测量,以生成模板优良结果输出。 使用模板优化结果执行模板限定,以生成模板验证结果输出。 如果模板限定结果可以接受,则基于模式的对齐模板将作为合格模式对齐模板输出。 否则,使用模式图像,基于模式的对准模板和模板优点结果来执行替代模板选择,以生成基于替代模式的对准模板输出。 模板优点测量包括信号内容测量,空间辨别测量和模式模糊度测量。

    Partition pattern match and integration method for alignment
    2.
    发明申请
    Partition pattern match and integration method for alignment 有权
    分区模式匹配和集成方法进行对齐

    公开(公告)号:US20060078192A1

    公开(公告)日:2006-04-13

    申请号:US10961663

    申请日:2004-10-08

    IPC分类号: G06K9/00

    摘要: A partition pattern template generation method for alignment receives a learning image and performs partition template generation using the learning image to generate a plurality of partition template result output. A partition template acceptance test is performed using the plurality of partition template results to generate partition templates or failure result. A partition template search method for alignment receives an alignment image and partition templates and performs a plurality of template search steps to generate a plurality of matching scores output. A partition integration method is performed using the plurality of matching scores to generate a partition template search result. A partition integration error self checking method receives a preliminary template search result position and a plurality of the matching scores. A matching score profile comparison is performed using the plurality of the matching scores and the expected matching score profile to generate the template search result.

    摘要翻译: 用于对准的分割图案模板生成方法接收学习图像,并使用学习图像来执行分割模板生成,以生成多个分割模板结果输出。 使用多个分区模板结果执行分区模板验收测试,以生成分区模板或故障结果。 用于对准的分割模板搜索方法接收对准图像和分割模板,并且执行多个模板搜索步骤以生成多个匹配分数输出。 使用多个匹配分数来执行分区集成方法以生成分区模板搜索结果。 分区整合错误自检方法接收初步模板搜索结果位置和多个匹配分数。 使用多个匹配分数和预期匹配分数分布来执行匹配分数分布比较,以生成模板搜索结果。

    Fast high precision matching method
    3.
    发明申请
    Fast high precision matching method 有权
    快速高精度匹配方法

    公开(公告)号:US20050114332A1

    公开(公告)日:2005-05-26

    申请号:US10723397

    申请日:2003-11-26

    申请人: Shih-Jong Lee Seho Oh

    发明人: Shih-Jong Lee Seho Oh

    IPC分类号: G06F17/30 G06K9/68 G06T7/00

    摘要: A fast high precision matching method receives an input image and a template. An initial search method uses the input image and the template to create an initial search result output. A high precision match uses the initial search result, the input image, and the template to create a high precision match result output. The high precision match method estimates high precision parameters by image interpolation and interpolation parameter optimization. The high precision match method also performs robust matching by limiting pixel contribution or pixel weighting. An invariant high precision match method estimates subpixel position and subsampling scale and rotation parameters by image interpolation and interpolation parameter optimization on the log-converted radial-angular transformation domain. This invention provides a fast method for high precision matching with the equivalent subpixel and subsampling interpolation in the image or template domain without actual performing the subpixel interpolation and/or subsampling. It achieves the high precision through sampling parameter optimization. Therefore, very fine sampling precision can be accomplished without the difficulty of high resolution image/template storage and expensive computation for actual matching at high resolution. This invention is generalized to include the high precision scale and rotation invariant matching through parameter optimization on log-converted radial-angular coordinate. This invention can be easily generalized to three-dimensional or higher dimensional invariant high precision pattern search and can achieve even greater speed advantage comparing to the prior art methods. Therefore, it can be used in applications such as 3D medical imaging, dynamic medical imaging, confocal microscopy, live cell assays in drug discovery, or ultrasound imaging.

    摘要翻译: 快速高精度匹配方法接收输入图像和模板。 初始搜索方法使用输入图像和模板来创建初始搜索结果输出。 高精度匹配使用初始搜索结果,输入图像和模板来创建高精度匹配结果输出。 高精度匹配方法通过图像插值和插值参数优化来估计高精度参数。 高精度匹配方法还通过限制像素贡献或像素加权来执行鲁棒匹配。 不变高精度匹配方法通过对数转换的径向角变换域的图像插值和插值参数优化来估计子像素位置和子采样比例尺和旋转参数。 本发明提供了一种用于与图像或模板域中的等效子像素和子采样内插进行高精度匹配而不实际执行子像素内插和/或二次采样的快速方法。 通过采样参数优化实现了高精度。 因此,可以实现非常精细的采样精度,而不需要高分辨率图像/模板存储的难度,并且在高分辨率下实际匹配的昂贵的计算。 本发明概括为包括通过对数转换的径向角坐标的参数优化的高精度尺度和旋转不变匹配。 本发明可以容易地推广到三维或更高维度不变高精度图案搜索,并且与现有技术方法相比可以获得更大的速度优势。 因此,它可以用于3D医学成像,动态医学成像,共聚焦显微镜,药物发现中的活细胞测定或超声成像等应用。

    Method of directed pattern enhancement for flexible recognition
    4.
    发明申请
    Method of directed pattern enhancement for flexible recognition 有权
    用于灵活识别的定向图案增强方法

    公开(公告)号:US20070127834A1

    公开(公告)日:2007-06-07

    申请号:US11301292

    申请日:2005-12-07

    申请人: Shih-Jong Lee Seho Oh

    发明人: Shih-Jong Lee Seho Oh

    摘要: A directed pattern enhancement method receives a learning image and pattern enhancement directive. Pattern enhancement learning is performed using the learning image and the pattern enhancement directive to generate pattern enhancement recipe. An application image is received and a pattern enhancement application is performed using the application image and the pattern enhancement recipe to generate pattern enhanced image. A recognition thresholding is performed using the pattern enhanced image to generate recognition result. The pattern enhancement directive consists of background directive, patterns to enhance directive, and patterns to suppress directive. A partitioned modeling method receives an image region and performs feature extraction on the image region to generate characterization feature. A hierarchical partitioning is performed using the characterization feature to generate hierarchical partitions. A model generation is performed using the hierarchical partitions to generate partition model. The partitioned modeling further performs a partitioned matching step that matches an input point to the partition model to generate a matching score output. A partition model update method receives a partition model and input data for model update. A partition model update is performed using the partition model and the data to generate an updated partition model.

    摘要翻译: 定向图案增强方法接收学习图像和图案增强指令。 使用学习图像和图案增强指令执行图案增强学习以产生图案增强配方。 接收应用图像,并且使用应用图像和图案增强配方来执行图案增强应用以生成图案增强图像。 使用图案增强图像执行识别阈值以产生识别结果。 模式增强指令包括背景指令,增强指令的模式和抑制指令的模式。 分区建模方法接收图像区域并对图像区域执行特征提取以产生表征特征。 使用表征特征来执行分层分区以生成分层分区。 使用分层分区执行模型生成以生成分区模型。 分区建模还执行将输入点与分区模型相匹配以产生匹配分数输出的分割匹配步骤。 分区模型更新方法接收分区模型并输入模型更新数据。 使用分区模型和数据执行分区模型更新,以生成更新的分区模型。

    Feature regulation for hierarchical decision learning
    5.
    发明申请
    Feature regulation for hierarchical decision learning 有权
    层次决策学习的特征规范

    公开(公告)号:US20050144147A1

    公开(公告)日:2005-06-30

    申请号:US10746169

    申请日:2003-12-26

    IPC分类号: G06F15/18 G06N5/00

    摘要: A feature regulation application method for hierarchical decision learning systems receives a feature regulation training data. A feature regulation method uses the feature regulation training data and invokes a plurality of the hierarchical decision learning to create feature subset information output. The feature regulation application method also receives a learning data. A feature sampling method uses the feature subset information and the learning data to create a feature subset learning data output. A hierarchical decision learning method uses the feature subset learning data to create a hierarchical decision system output. The feature regulation method also outputs feature ranking information. A feature regulated hierarchical decision learning method uses the feature subset learning data and the feature ranking information to create a hierarchical decision system output. This invention performs feature selection using a feature regulation method designed specifically for hierarchical decision learning systems such as decision tree classifiers. It provide a computationally feasible method for feature selection that considers the hierarchical decision learning systems used for decision making. It evaluates the stability of features subject to context switching and the reliability of the tree nodes by information integration. It provides the ranking of the features that can be incorporated in the creation of the hierarchical decision learning systems.

    摘要翻译: 用于分层决策学习系统的特征调节应用方法接收特征调节训练数据。 特征调节方法使用特征调节训练数据并且调用多个分层决策学习来创建特征子集信息输出。 特征调节应用方法还接收学习数据。 特征采样方法使用特征子集信息和学习数据来创建特征子集学习数据输出。 分层决策学习方法使用特征子集学习数据来创建分层决策系统输出。 特征调节方法还输出特征排序信息。 特征调节分层决策学习方法使用特征子集学习数据和特征排序信息来创建分层决策系统输出。 本发明使用专门用于分层决策学习系统(例如决策树分类器)而设计的特征调节方法来执行特征选择。 它提供了一种考虑用于决策的分层决策学习系统的特征选择的计算可行方法。 它通过信息集成评估上下文切换的特征的稳定性和树节点的可靠性。 它提供了可以纳入到分级决策学习系统的创建中的功能的排名。

    Object based boundary refinement method
    6.
    发明申请
    Object based boundary refinement method 有权
    基于对象的边界细化方法

    公开(公告)号:US20060285743A1

    公开(公告)日:2006-12-21

    申请号:US11165561

    申请日:2005-06-20

    申请人: Seho Oh Shih-Jong Lee

    发明人: Seho Oh Shih-Jong Lee

    IPC分类号: G06K9/00 G06K9/48

    摘要: An object based boundary refinement method for object segmentation in digital images receives an image and a single initial object region of interest and performs refinement zone definition using the initial object regions of interest to generate refinement zones output. A directional edge enhancement is performed using the input image and the refinement zones to generate directional enhanced region of interest output. A radial detection is performed using the input image the refinement zones and the directional enhanced region of interest to generate radial detection mask output. In addition, a final shaping is performed using the radial detection mask having single object region output. A directional edge enhancement method determining pixel specific edge contrast enhancement direction according to the object structure direction near the pixel consists receives an image and refinement zones and performs 1D horizontal distance transform and 1D vertical distance transform using the refinement zones to generate horizontal distance map and vertical distance map outputs. A neighboring direction determination is performed using the horizontal distance map and the vertical distance map to generate neighboring image output. In addition, a directional edge contrast calculation using the neighboring image and input image having directional enhanced region of interest output.

    摘要翻译: 用于数字图像中对象分割的基于对象的边界细化方法接收图像和感兴趣的单个初始对象区域,并使用感兴趣的初始对象区域执行细化区域定义,以生成细化区域输出。 使用输入图像和细化区域来执行方向边缘增强以产生方向增强的兴趣区域输出。 使用输入图像进行径向检测,该细化区域和方向增强区域用于产生径向检测掩模输出。 另外,使用具有单个物体区域输出的径向检测掩模进行最终成形。 根据像素附近的物体结构方向确定像素特征边缘对比度增强方向的方向边缘增强方法包括接收图像和细化区域,并使用细化区域进行1D水平距离变换和1D垂直距离变换,以生成水平距离图和垂直 距离图输出。 使用水平距离图和垂直距离图执行相邻方向确定以生成相邻图像输出。 另外,使用相邻图像的方向边缘对比度计算和具有方向增强感兴趣区域输出的输入图像。

    Intelligent spatial reasoning
    7.
    发明授权
    Intelligent spatial reasoning 有权
    智能空间推理

    公开(公告)号:US07263509B2

    公开(公告)日:2007-08-28

    申请号:US10411437

    申请日:2003-04-09

    IPC分类号: G06F12/00 G06N5/02

    摘要: An intelligent spatial reasoning method receives a plurality of object sets. A spatial mapping feature learning method uses the plurality of object sets to create at least one salient spatial mapping feature output. It performs spatial reasoning rule learning using the at least one spatial mapping feature to create at least one spatial reasoning rule output. The spatial mapping feature learning method performs a spatial mapping feature set generation step followed by a feature learning step. The spatial mapping feature set is generated by repeated application of spatial correlation between two object sets. The feature learning method consists of a feature selection step and a feature transformation step and the spatial reasoning rule learning method uses the supervised learning method.The spatial reasoning approach of this invention automatically characterizes spatial relations of multiple sets of objects by comprehensive collections of spatial mapping features. Some of the features have clearly understandable physical, structural, or geometrical meanings. Others are statistical characterizations, which may not have clear physical, structural or geometrical meanings when considered individually. A combination of these features, however, could characterize subtle physical, structural or geometrical conditions under practical situations. One key advantage of this invention is the ability to characterize subtle differences numerically using a comprehensive feature set.

    摘要翻译: 智能空间推理方法接收多个对象集。 空间映射特征学习方法使用多个对象集来创建至少一个显着的空间映射特征输出。 它使用至少一个空间映射特征来执行空间推理规则学习以创建至少一个空间推理规则输出。 空间映射特征学习方法执行空间映射特征集生成步骤,随后是特征学习步骤。 通过重复应用两个对象集之间的空间相关性来生成空间映射特征集。 特征学习方法由特征选择步骤和特征变换步骤组成,空间推理规则学习方法采用监督学习方法。 本发明的空间推理方法通过空间映射特征的综合集合自动表征多组对象的空间关系。 一些功能具有明确的理解,物理,结构或几何意义。 其他是统计特征,当单独考虑时可能没有明确的物理,结构或几何意义。 然而,这些特征的组合可以在实际情况下表征微妙的物理,结构或几何条件。 本发明的一个关键优点是能够使用综合特征集在数值上表征微妙的差异。

    Structure-guided image inspection
    8.
    发明授权
    Structure-guided image inspection 有权
    结构导向图像检查

    公开(公告)号:US07076093B2

    公开(公告)日:2006-07-11

    申请号:US10247723

    申请日:2002-09-16

    IPC分类号: G06K9/00

    摘要: A structure-guided transformation transforms a region of an image into a region in the structure-transformed image according to the desired structure. The invention achieves efficient and accurate structure-guided processing such as filtering, detection and comparison in the transformed domain and thereby facilitates use of simple operations to enhance or detect straight lines or edges. Structure information is used to enhance and detect image features of interest even when the shape of the image structure is not regular. Both global and local structures of objects can be inspected. Global structure inspection detects gross errors in image structure; therefore side effects caused by mismatched structure-guided processing are avoided. Subtle defects along the edge of a structure can be detected by local structure inspection. Structure information guidance provides an edge detection inspection system that tolerates significant noise and contrast variations.

    摘要翻译: 结构引导变换根据期望的结构将图像的区域变换为结构变换图像中的区域。 本发明实现了有效和准确的结构引导处理,如变换域中的过滤,检测和比较,从而便于使用简单的操作来增强或检测直线或边缘。 即使当图像结构的形状不规则时,结构信息也用于增强和检测感兴趣的图像特征。 可以检查对象的全局和局部结构。 全局结构检查检测图像结构中的粗略错误; 因此避免了由错配的结构引导处理引起的副作用。 沿结构边缘的微小缺陷可以通过局部结构检查来检测。 结构信息指导提供了边缘检测检测系统,其容忍显着的噪声和对比度变化。

    Automatic detection of alignment or registration marks
    9.
    发明授权
    Automatic detection of alignment or registration marks 有权
    自动检测对准或对准标记

    公开(公告)号:US06842538B2

    公开(公告)日:2005-01-11

    申请号:US09815816

    申请日:2001-03-23

    CPC分类号: G06K9/4604

    摘要: Mark detection and position determination are improved by use of directional elongated filters, symmetry, gray scale image processing, structural constraints, and learning. Directional elongated filters are used to pre-process images of registration marks to create masks and enhanced images. Working sequentially, portions of the mark are detected and classified. The input gray scale image of the mark is processed using its structural constraints in conjunction with a mask for the detected mark. A cost function estimation determines mark position and orientation with sub-pixel accuracy. Learning is used to improve specific application performance.

    摘要翻译: 通过使用定向细长滤波器,对称性,灰度图像处理,结构约束和学习来提高标记检测和位置确定。 定向拉长过滤器用于预处理对准标记的图像以创建掩模和增强图像。 按顺序工作,对标记的部分进行检测和分类。 使用其结构约束结合用于检测标记的掩码来处理标记的输入灰度图像。 成本函数估计用子像素精度确定标记位置和方向。 学习用于提高特定的应用程序性能。

    High speed image processing apparatus using a cascade of elongated filters programmed in a computer
    10.
    发明授权
    High speed image processing apparatus using a cascade of elongated filters programmed in a computer 有权
    使用在计算机中编程的细长滤波器级联的高速图像处理装置

    公开(公告)号:US06404934B1

    公开(公告)日:2002-06-11

    申请号:US09692948

    申请日:2000-10-20

    IPC分类号: G06T520

    CPC分类号: G06T5/30

    摘要: A high speed image processing apparatus is created through the use of cascaded elongated filters. The processing speed of the filters is kernel size insensitive, enabling use of general purpose computing facilities to process high resolution, monochrome, and multi-spectrum images. Elongated filters described include both linear and non-linear filters. Very large kernel and multi-dimensional image processing is accomplished with reduced complexity and portable programming instructions.

    摘要翻译: 通过使用级联的细长过滤器创建高速图像处理装置。 过滤器的处理速度是内核大小不敏感的,可以使用通用计算机来处理高分辨率,单色和多光谱图像。 所描述的细长滤波器包括线性和非线性滤波器。 非常大的内核和多维图像处理通过降低的复杂性和便携式编程指令来实现。