摘要:
Problems with accuracy reading position detection signal peaks and minute phase differences in the detection current make motor drive control easily susceptible to differences in motor characteristics. The rotor position is determined based on whether or not a terminal difference voltage, which is the difference voltage between the motor terminal voltage and the pseudo-neutral-point voltage when the motor phases are selectively energized, exceeds a specific threshold value. The phase energized to start the motor is determined based on this determination and the motor is energized accordingly to start. Instead of switching directly from the search step at the initial rotor position to the back-EMF voltage mode, a search and start mode that creates initial rotor speed sufficient to start the motor is executed before entering the back-EMF voltage mode.
摘要:
A motor driving apparatus includes a virtual difference voltage detecting unit operable to detect a difference voltage between a virtual neutral point of a resistor circuit connected in parallel to motor coils and a terminal of a motor coil in non-conduction state, a rotor position detecting unit operable to detect a position of the rotor based on the difference voltage, and a controller operable to control commutation of an inverter based on the rotor position. The motor driving apparatus has a searching start mode for detecting the rotor position and energizes the coils, and a back electromotive voltage feedback mode for controlling commutation based on the back electromotive voltage. In the searching start mode, a rotor position searching process and a rotation start torque applying process are alternately performed.
摘要:
A motor driving apparatus includes a virtual difference voltage detecting unit operable to detect a difference voltage between a virtual neutral point of a resistor circuit connected in parallel to motor coils and a terminal of a motor coil in non-conduction state, a rotor position detecting unit operable to detect a position of the rotor based on the difference voltage, and a controller operable to control commutation of an inverter based on the rotor position. The motor driving apparatus has a searching start mode for detecting the rotor position and energizes the coils, and a back electromotive voltage feedback mode for controlling commutation based on the back electromotive voltage. In the searching start mode, a rotor position searching process and a rotation start torque applying process are alternately performed.
摘要:
A motor driving apparatus has a driver circuit configuration capable of individually adjusting three phase coil currents. Coil current waveforms are formed to have a total of three phase shaft direction forces to be zero in compliance with predetermined mathematical expressions, and thus, three phase coil current profiles can be made independent of one another, and vibration-causing factors attributed to the fact that a certain phase is in an non-energized state are corrected by adjusting the current profiles of the other phases. Consequently, the vibration and the noise can be reduced.
摘要:
A motor driving apparatus has a driver circuit configuration capable of individually adjusting three phase coil currents. Coil current waveforms are formed to have a total of three phase shaft direction forces to be zero in compliance with predetermined mathematical expressions, and thus, three phase coil current profiles can be made independent of one another, and vibration-causing factors attributed to the fact that a certain phase is in an non-energized state are corrected by adjusting the current profiles of the other phases. Consequently, the vibration and the noise can be reduced.
摘要:
A rotor position sensorless multiphase motor driving device includes a rotor; a plurality of phase windings; a common terminal to which one terminal of terminals at both ends of each winding is star connected; an upper-side drive transistor and a lower-side drive transistor connected to the other terminal of the winding; a commutation control unit operable to select two terminals other than the common terminal of the windings, and to turn on the corresponding pair of upper-side drive transistor and the lower-side drive transistor; a rotor position search pulse applying unit operable to apply a search pulse to the selected two terminals; and a comparing unit operable to detect a rotor position based on a response signal generated between the terminal which was unselected and the common terminal according to the search pulse application.
摘要:
A rotor position sensorless multiphase motor driving device includes a rotor; a plurality of phase windings; a common terminal to which one terminal of terminals at both ends of each winding is star connected; an upper-side drive transistor and a lower-side drive transistor connected to the other terminal of the winding; a commutation control unit operable to select two terminals other than the common terminal of the windings, and to turn on the corresponding pair of upper-side drive transistor and the lower-side drive transistor; a rotor position search pulse applying unit operable to apply a search pulse to the selected two terminals; and a comparing unit operable to detect a rotor position based on a response signal generated between the terminal which was unselected and the common terminal according to the search pulse application.
摘要:
In a disk drive apparatus of the present invention, power transistors of a power supplying part execute high-frequency switching operation and form current paths to three-phase windings so as to rotate a disk, a position detecting part produces a position signal which responds with terminal voltages of the three-phase windings, an activation operation part controls active periods of the power transistors in response to an output signal of the position detecting part, a commanding part produces a command signal in response to an output pulse signal of the position detecting part, and a switching operation block produces a switching pulse signal in response to a comparison result of a current detection signal with the command signal. The activation operation part produces a slew-rate switching signal which responds with the switching pulse signal, and causes at least a power transistor of the power supplying part to follow the slew-rate switching signal, thereby executing high-frequency switching of the power transistor in response to the slew-rate switching signal.
摘要:
A motor driving apparatus includes a comparator, a threshold controller, a position determining unit, a phase-switching controller, and a current output unit. While the rotor is stopped, the phase-switching controller supplies a predetermined phase of winding with a current pulse having a predetermined pulse width so as not to cause the rotor to react and operate, in order to determine the initial position of the rotor. The position determining unit determines an initial position of the rotor based on the result of comparison between the induced voltage generated in a non-conduction phase by the current pulse and the threshold. The phase-switching controller performs energization or commutation according to the determined initial position of the rotor to start up the motor.
摘要:
A Motor driving apparatus adjusts activation start timing of high-side activation control signals UU, VU, WU and the low-side activation control signals UL, VL, and WL with a state determination signal SJ in an activation controller 40, in the period from starting to the time when rotor rotating speed reaches a predetermined value, sets the activation start timing earlier than in normal times to perform leading phase activation control, and in normal times when the rotor rotating speed is a predetermined value or more, controls activation start timing in efficient and optimum phase. Hence, the motor driving apparatus can carry out stable PWM sensorless starting without any starting failure such as oscillation, loss of synchronism and reverse rotation and shorten starting time.