摘要:
The present invention relates to a lightweight and flexible material for prevention of electric waves having both absorbing properties and shielding properties against electric waves. In the present invention, carbon fiber or magnetic particles, or both and graphitized carbon black are dispersed and incorporated into an insulating substrate so that the weight ratio of the graphitized carbon black to the carbon fiber, the magnetic particles or the sum of the two may be 0.3 to 5.
摘要:
A wave absorber which is light in weight, rich in flexibility and excellent in wave absorption characteristics in a microwave frequency range. The wave absorber in which composite carbon black particles including crystalline graphite and amorphous carbon black are dispersed into an insulating matrix. In the wave absorber, dispersion of the composite carbon black particles is adjusted so that a ratio (.rho./R) of a volume resistivity .rho. measured at frequencies of 30, 100 and 500 kHz to a measured DC volume resistivity R is in a predetermined range and a volume ratio of the composite carbon black particles having particle diameters of 10 nm to 200 nm to all the composite carbon black particles is in a range of 5% to 95%. Thereby, a wave absorber excellent in absorption characteristics is obtained.
摘要:
An organic EL panel comprises anodes, a cathode, organic light-emitting layers, and first functional layers each including a hole injection layer and a hole transport layer. The hole injection layer of each of the R, G, and B colors is made of only a metal oxide including tungsten oxide, and has a thickness of 5 nm to 40 nm. At least one of the hole injection layers has a thickness different from the other hole injection layers. The hole transport layers of the R, G, and B colors are equivalent in thickness. The organic light-emitting layers of the R, G, and B colors are equivalent in thickness.
摘要:
To increase light-extraction efficiency and simplify manufacturing process. An organic EL panel includes: first electrode reflecting incident light; second electrode transmitting incident light therethrough; organic light-emitting layer emitting light of corresponding color among R, G, and B colors; first functional layer including charge injection/transport layer and at least one other layer, and disposed between the first electrode and the light-emitting layer; and second functional layer disposed between the second electrode and the light-emitting layer. The charge injection/transport layers of R, G, and B colors differ in film thickness, the at least one other layers of R, G, and B colors are equal in film thickness to one another, the second functional layers of R, G, and B colors are equal in film thickness to one another, and the light-emitting layers of R and G colors are equal in film thickness, and differ in film thickness from the light-emitting layer of B color.
摘要:
An organic EL panel includes first electrode, second electrode; organic light-emitting layer of each of RGB colors, and functional layer disposed between the first electrode and the light-emitting layer. The functional layers of RGB colors have the same film thickness. Film thickness of each of the functional layers of RG colors corresponds to a first local maximum of light-extraction efficiency of light before passing through a color filter, and film thickness of the functional layer of B color corresponds to a value of light-extraction efficiency smaller than a first local maximum of light-extraction efficiency of light before passing through a color filter. The light-emitting layers of RGB colors differ in film thickness, such that the functional layers of RGB colors have the film thickness. Accordingly, the light of each of RGB colors emitted externally after passing through the color filter exhibits a local maximum of light-extraction efficiency.
摘要:
To increase light-extraction efficiency and simplify manufacturing process. An organic EL panel includes: first electrode reflecting incident light; second electrode transmitting incident light therethrough; organic light-emitting layer emitting light of corresponding color among RGB colors; first functional layer including charge injection/transport layer and at least one other layer, and disposed between the first electrode and the light-emitting layer; and second functional layer disposed between the second electrode and the light-emitting layer. The first functional layers of the RGB colors are equal in film thickness, the organic light-emitting layers of the RGB colors are equal in optical distance from the first electrode, the second functional layers of the RGB colors are equal in film thickness, the organic light-emitting layers of the RGB colors are equal in optical distance from the second electrode, and the organic light-emitting layers of the RGB colors differ in film thickness.
摘要:
An organic EL panel includes first electrode, second electrode; organic light-emitting layer of each of RGB colors, and functional layer disposed between the first electrode and the light-emitting layer. The functional layers of RGB colors have the same film thickness. Film thickness of each of the functional layers of RG colors corresponds to a first local maximum of light-extraction efficiency of light before passing through a color filter, and film thickness of the functional layer of B color corresponds to a value of light-extraction efficiency smaller than a first local maximum of light-extraction efficiency of light before passing through a color filter. The light-emitting layers of RGB colors differ in film thickness, such that the functional layers of RGB colors have the film thickness. Accordingly, the light of each of RGB colors emitted externally after passing through the color filter exhibits a local maximum of light-extraction efficiency.
摘要:
To increase light-extraction efficiency and simplify manufacturing process. An organic EL panel includes: first electrode reflecting incident light; second electrode transmitting incident light therethrough; organic light-emitting layer emitting light of corresponding color among R, G, and B colors; first functional layer including charge injection/transport layer and at least one other layer, and disposed between the first electrode and the light-emitting layer; and second functional layer disposed between the second electrode and the light-emitting layer. The charge injection/transport layers of R and G colors are equal in film thickness, and differ in film thickness from the charge injection/transport layer of the B color, the at least one other layers of R, G, and B colors are equal in film thickness, the second functional layers of R, G, and B colors are equal in film thickness, and the light-emitting layers of R, G, and B colors differ in film thickness.
摘要:
An organic light-emitting panel includes a reflective electrode, a functional layer, having a single or multi-layer structure, located on the reflective electrode, an organic light-emitting layer located on the functional layer, a transparent electrode located above the organic light-emitting layer, a low refractive index layer located on the transparent electrode, and a first thin-film sealing layer located on the low refractive index layer. The low refractive index layer has a lower refractive index than both the transparent electrode and the first thin-film sealing layer. Difference between respective refractive indices of the low refractive index layer and the transparent electrode is 0.4-1.1. Difference between respective refractive indices of the low refractive index layer and the first thin-film sealing layer is 0.1-0.8. The low refractive index layer has thickness of 20-130 nm.
摘要:
An organic EL panel comprises anodes, a cathode, organic light-emitting layers, and first functional layers each including a hole injection layer and a hole transport layer. The hole injection layer of each of the R, G, and B colors is made of only a metal oxide including tungsten oxide, and has a thickness of 5 nm to 40 nm. At least one of the hole injection layers has a thickness different from the other hole injection layers. The hole transport layers of the R, G, and B colors are equivalent in thickness. The organic light-emitting layers of the R, G, and B colors are equivalent in thickness.