摘要:
This invention provides novel composite biomaterials having excellent bioadaptability and bone inductivity and a process for producing the same. The composite biomaterials comprise hydroxyapatite, collagen, and alginate and have microporous structures in which the c-axis of the hydroxyapatite is oriented along the collagen fibers.
摘要:
This invention relates to a process for producing porous and composite materials comprising steps of: freezing a complex containing at least one calcium salt selected from calcium carbonate, calcium phosphate, and hydroxyapatite and collagen, at least a part of which is gelatinized; and then lyophilizing the resultant. The porous and composite materials obtained by the method of the present invention have large pore diameters, high porosities, and adequate mechanical strengths and biodegradability. Thus, they are suitable for implants such as bone fillers, drug carriers for sustained-release, and the like.
摘要:
This invention provides novel composite biomaterials having excellent bioadaptability and bone inductivity and a process for producing the same. The composite biomaterials comprise hydroxyapatite, collagen, and alginate and have microporous structures in which the c-axis of the hydroxyapatite is oriented along the collagen fibers.
摘要:
This invention relates to a process for producing porous and composite materials comprising steps of: freezing a complex containing at least one calcium salt selected from calcium carbonate, calcium phosphate, and hydroxyapatite and collagen, at least a part of which is gelatinized; and then lyophilizing the resultant. The porous and composite materials obtained by the method of the present invention have large pore diameters, high porosities, and adequate mechanical strengths and biodegradability. Thus, they are suitable for implants such as bone fillers, drug carriers for sustained-release, and the like.
摘要:
Disclosed is a material for sustained chemical-release in vivo, which comprises a hydroxyapatite/collagen (HAp/Col) nanocomposite formed as a coprecipitate, and a chemical consisting at least one of a drug and a bioactive substance including a growth factor and a DNA enzyme. The hydroxyapatite (HAp) has a specific surface area in the range of 50 to 300 m2/g. The hydroxyapatite (HAp) and the collagen (Col) are combined in such a manner that the crystals of the hydroxyapatite (HAp) are oriented in the C-axis direction around the fibers of the collagen (Col). The chemical is carried on the surface of the hydroxyapatite (HAp), the surface of the collagen (Col) and in a hydrated water of the hydroxyapatite (HAp) and the collagen (Col). The sustained chemical-release material can be prepared in the form of a bioabsorbable capsule, or in the form of allowing in vivo administration by injection and in-vivo gelation after said administration.
摘要:
Disclosed is an artificial vertebra having a bone-marrow regenerating function, comprising a hydroxyapatite (HAp)/collagen (Col) composite body formed by pressure-dehydrating a coprecipitate of hydroxyapatite and collagen to have a nanocomposite structure in which HAp particles are conjugated along a Col fiber while aligned each of the c-axes of the HAp particles along the Col fiber. The HAp/Col composite body is formed with a perforated aperture for allowing a blood vessel and an osteogenic cell to intrude thereinto. The present invention also provides a biodecomposable/bioabsorbable support for fixing an artificial vertebra, comprising a polylactic acid plate prepared by injection-molding molten polylactic acid and then extrusion-molding the injection-molded polylactic acid in such a manner that it is draw-oriented in a uniaxial direction. The plate has four corner regions each formed with a screw hole for fixing the plate to vertebral bodies.
摘要:
A method for producing a porous body comprising apatite/collagen composite fibers comprising the steps of gelling a dispersion comprising long apatite/collagen composite fibers having an average length of 10-75 mm, short apatite/collagen composite fibers having an average length of 0.05-1 mm, and a liquid; freezing and drying the resultant gel to form a porous body; and cross-linking collagen in the porous body.
摘要:
A method for producing a porous body comprising apatite/collagen composite fibers comprising the steps of gelling a dispersion comprising long apatite/collagen composite fibers having an average length of 10-75 mm, short apatite/collagen composite fibers having an average length of 0.05-1 mm, and a liquid; freezing and drying the resultant gel to form a porous body; and cross-linking collagen in the porous body.
摘要:
A porous composite comprising a porous layer containing a calcium phosphate ceramic, and a dense layer formed on part of the porous layer and having a smaller average pore size than that of the porous layer. The porous composite can be produced by (1) introducing a slurry containing a calcium phosphate ceramic/collagen composite and collagen into a molding die having a high thermal conductivity, (2) rapidly freezing and drying the slurry in the molding die, to form a porous body comprising a porous layer and a dense layer formed on the porous layer, (3) cross-linking collagen in the porous body, and (4) removing the dense layer except for a portion thereof on a surface coming into contact with a soft tissue when implanted in a human body, so that the porous layer is exposed.
摘要:
This invention provides organic/inorganic composite biomaterials constituted by composites of hydroxyapatite and collagen and having an average fiber length of 60 μm or longer, and a process for producing the same in which the calcium ion and phosphate ion concentrations in the reaction vessel are optimized through regulation of the concentration of a starting material and the flow rate. The organic/inorganic composite biomaterials have mechanical strength and a biodegradation rate suitable for artificial bones through the introduction of crosslinking therein.