摘要:
An integrated circuit device includes a common transceiver macrocell including a circuit necessary for host operation and a circuit necessary for device operation. The common transceiver macrocell includes an analog front-end circuit and a high-speed logic circuit. The high-speed logic circuit includes a parallel/serial conversion circuit, a first parallel interface which serves as an interface between an external circuit and the parallel/serial conversion circuit, a sampling clock generation circuit, a serial/parallel conversion circuit, and a second parallel interface which serves as an interface between the serial/parallel conversion circuit and the external circuit.
摘要:
An integrated circuit device includes a common transceiver macrocell including a circuit necessary for host operation and a circuit necessary for device operation. The common transceiver macrocell includes an analog front-end circuit and a high-speed logic circuit. The high-speed logic circuit includes a parallel/serial conversion circuit, a first parallel interface which serves as an interface between an external circuit and the parallel/serial conversion circuit, a sampling clock generation circuit, a serial/parallel conversion circuit, and a second parallel interface which serves as an interface between the serial/parallel conversion circuit and the external circuit.
摘要:
A transceiver includes upstream differential signal lines DPUP and DMUP, downstream differential signal lines DPDW and DMDW, common differential signal lines DPCM and DMCM, a first transmission driver of which outputs are connected to DPUP and DMUP, a second transmission driver of which outputs are connected to DPDW and DMDW, a first switch circuit which connects the first transmission driver to a logic circuit during upstream connection and connects the second transmission driver to the logic circuit during downstream connection, a second switch circuit which respectively connects DPUP and DMUP to DPCM and DMCM during the upstream connection and respectively connects DPDW and DMDW to DPCM and DMCM during the downstream connection, and a third transmission driver connected to DPCM and DMCM.
摘要:
A transceiver includes upstream differential signal lines DPUP and DMUP, downstream differential signal lines DPDW and DMDW, common differential signal lines DPCM and DMCM, a first transmission driver of which outputs are connected to DPUP and DMUP, a second transmission driver of which outputs are connected to DPDW and DMDW, a first switch circuit which connects the first transmission driver to a logic circuit during upstream connection and connects the second transmission driver to the logic circuit during downstream connection, a second switch circuit which respectively connects DPUP and DMUP to DPCM and DMCM during the upstream connection and respectively connects DPDW and DMDW to DPCM and DMCM during the downstream connection, and a third transmission driver connected to DPCM and DMCM.
摘要:
A clock generation circuit capable of generating a high-frequency clock with a simple circuit configuration, together with a data transfer control device and an electronic instrument using the same. The clock generation circuit has: serially-connected inversion circuits IV0 to IV4 in which an output of IV4 is connected to an input of IV0 by a feedback line FL; and buffer circuits BF0 to BF4 which receives outputs from IV0 to IV4. The inversion circuits IV0 to IV4 are disposed along a line LN1 and the buffer circuits BF0 to BF4 are disposed along a line LN2 that is parallel to the feedback line FL but different from LN1. Dummy lines DL0 to DL3 each of which having parasitic capacitance that is equal to that of the feedback line FL are connected to the inversion circuits IV0 to IV3, to equalize the phase differences between clocks CK0 to CK4. The feedback line FL and the dummy lines DL0 to DL3 are disposed in a region between the inversion circuits IV0 to IV4 and the buffer circuits BF0 to BF4. Between which edges of multi-phase clocks an edge of data (data transferred in USB 2.0 HS mode) is located is detected, and a clock selected on the basis of edge detection information is set as a sampling clock.
摘要:
A data transfer control device and an electronic instrument which can implement a process to be made on data transmitted and received through a high speed bus on a circuit operating at a low frequency. The data transfer control device has a conversion circuit which converts K-bit width data transferred at a frequency FC1 (in USB 2.0 HS mode) through a bus into data having an L-bit width (L>K) by rearranging, and a processing circuit which receives the L-bit width data from the conversion circuit and carries out a K-bit based process on an L-bit basis at a frequency FC2 lower than FC1. This enables to perform the K-bit based process at the low frequency FC2. Configuration on a transmission end can be implemented in the same manner. The transfer data in the USB 2.0 HS mode is processed on the L-bit basis while the transfer data in the FS mode is processed on the K-bit basis. The present invention is applicable also to the process on data transferred through a bus under the IEEE1394 or SCSI.
摘要:
The present invention provides a serial/parallel conversion circuit that has both a serial/parallel conversion function and a buffer function for absorbing clock frequency differences, together with a data transfer control device and electronic equipment. The serial/parallel conversion circuit (elasticity buffer) comprises a data holding register which holds serial data DIN that is input based on a CLK1 clock (480 MHz) in USB 2.0 HS mode; a determination circuit which determines whether or not held data is valid, by unit of a data cell; and a selector which outputs from the data holding register the data of data cells that have been determined to be valid, based on a CLK2 clock (60 MHz) having a frequency lower than that of CLK1. A data cell in which data of the first bit has been determined to be valid is deemed to be valid in the next CLK2 clock cycle. The determination of whether or not data cells are valid is done in each clock cycle of CLK2, and the output of data in a data cell that is determined not to be valid is made to wait for one clock cycle. A write pulse signal is generated and the data holding register and data status register are operated thereby.
摘要:
A transfer controller (or a host controller) issues IN tokens to a plurality of USB devices connected to USB and including first and second USB devices. When data including destination information which specifies the second USB device as a destination has been received in response to an IN token issued to the first USB device, the transfer controller issues an OUT token to the second USB device and transmits the received data from the first USB device to the second USB device. The transfer controller issues an IN token to at least one of the USB devices which has declared itself to be a local area network (LAN) node.
摘要:
A buffer is provided with a CBW area (a randomly accessible command storage area) and an EP1 area (data storage area set to FIFO), when a CBW and data are allocated as informations to be transferred through one end point EP1. When a phase switches from a USB command phase (command transport) to a data phase (data transport), the information write area is switched from the CBW area to the EP1 area and OUT data transferred from the host to the end point EP1 is written into the EP1 area. The area switches from the CBW area to the EP1 area on condition that an acknowledgment has returned to the host in the command phase. In case of a toggle missing, area switching does not occur even if ACK is returned.
摘要:
A buffer is provided which includes an EP2 area (a data storage area set to FIFO) and a CSW area (a randomly accessible status storage area), when data and a CSW are allocated as information to be transferred through one end point EP2. When a phase has switched from a USB data phase (data transport) to a status phase (status transport), the information read area is switched from the EP2 area to the CSW area, and IN data to be transferred from the end point EP2 to a host is read from the CSW area. A CSW0 area for success status and a CSW1 area for non-success status are provided, and a status block packet in which is set either success or non-success default information is previously written therein.