Abstract:
A communication apparatus and method in a wireless communication system that support multiple Orthogonal Frequency Division Multiplexing (OFDM) parameter sets. A method includes determining a respective OFDM parameter set for each of multiple Radio Frequency (RF) chains; and processing an OFDM signal in each of the multiple RF chains based on a parameter value defined in the respective OFDM parameter set.
Abstract:
In one embodiment, a method for network entry in a wireless communication system includes acquiring ranging code configuration information, which represents the corresponding relationship among multiple beam vectors, multiple ranging sequences, and multiple ranging channels, determining an optimal downlink beam vector, and transmitting one of the ranging sequences corresponding to the optimal downlink beam vector to a Base Station (BS) through one of the ranging channels corresponding to the optimal downlink beam vector.
Abstract:
Disclosed is a method and an apparatus for subchannel assignment for suppressing inter-antenna interference in an Orthogonal Frequency Division Multiplexing Access (OFDMA) system based distributed wireless communication system equipped with antennas that are randomly distributed in a geographical manner and can simultaneously communicate with multiple Subscriber Stations (SSs). The method includes selecting and obtaining access to distributed antennas which satisfy the data transmission rate that an SS requires and with which the SS can communicate; re-queuing a distributed antenna having the maximum transmitted power within the same cell in high priority; and assigning subchannels to the relevant distributed antennas in an order from the relevant distributed antenna having the high priority.
Abstract:
Disclosed is an apparatus and method for adaptively allocating transmission power for beamforming combined with orthogonal space-time block codes (OSTBC) in a distributed wireless communication system, the apparatus comprising: a plurality of sub-arrays for beamforming, which are geographically distributed and each of which comprises a plurality of distributed antennas placed in random groups; and a central processing unit for identifying performances of subsets by applying a predetermined power allocation scheme according to subsets which can be obtained by combining the sub-arrays, by means of a Nakagami fading parameter and information about large-scale fading of each of the sub-arrays, fed back from a receiving party, for determining a subset having a best performance as an optimal subset according to the identified performances, and for performing power allocation based on the subset set as the optimal subset.
Abstract:
A method for Symbol Error Rate (SER) approximation of an SER-based transmission power allocation operation for an Orthogonal Space Time Block Code in a DWCS equipped with multiple transmission Distributed Antennas (DA) geographically dispersed at random. The method for SER approximation includes the steps of: setting multiple combinable antenna subsets from the multiple DAs; selecting a quasi-optimal antenna subset Ag (1≦g≦2n−1) having a quasi-optimal power allocation weight wg based on predetermined power allocation, for each of the set multiple antenna subsets; and calculating an SER approximation value of the selected quasi-optimal antenna subset by applying a Probability Density Function (PDF) of a Signal-to-Noise Ratio (SNR) to the OSTBC SER having symbol constellation of a predetermined modulation scheme. The output of the SER approximation value can be output to a transmitter, or to a space-time encoder of a central processor for optimal power transmission.
Abstract:
A method for operating a Mobile Station (MS) in a Multiple Input Multiple Output (MIMO) wireless communication system is provided. The method includes measuring channel quality for a serving Base Station (BS), if the channel quality is less than a threshold, measuring interference power from one or more neighbor BSs, determining a Precoding Matrix Index (PMI) and a priority metric for each neighbor BS, and feeding back at least one of the PMI, a PMI type indicator, the priority metric, and the channel quality to the serving BS.
Abstract:
A method provides mixed analog/digital beamforming by a transmitter in a mobile communication system. The method includes converting a modulation symbol into a parallel symbol stream, performing digital beamforming on the parallel symbol stream, performing an IFFT operation on the digital-beamformed parallel symbol stream to generate a time-domain symbol, converting the IFFT-operated time-domain symbol into a serial time-domain symbol, inserting a CP into the serial time-domain symbol, performing a DAC operation on the CP-inserted symbol to generate an analog signal, and performing analog beamforming by multiplying the analog signal by the analog beamforming precoder optimized for the first subcarrier transmitted through at least one RF channel.
Abstract:
A method and apparatus provide interference mitigation in a heterogeneous network using beamforming. In the method, a macro Mobile Station (MS) receives a broadcast message including a Precoding Matrix Index (PMI) set restricted in a macro cell, measures a Signal-to-Interference plus Noise Ratio (SINR) and a channel power from an adjacent femto Base Station (BS) and calculates a PMI, determines whether to request a dedicated frequency resource for a macro MS on the basis of the measured SINR, the channel power from the adjacent femto BS, and the calculated PMI, and requests the dedicated frequency resource for the macro MS from a macro BS.
Abstract:
A system and a method for forming a cell by using distributed antennas in a World interoperability for Microwave Access (WiMAX) mobile communication system supporting a broadband wireless access communication system. A virtual cell is formed with a specific Mobile Station (MS) as a central part of the virtual cell by using distributed antennas, which improves the transmission capacity and the performance of an overall network system without changing the structure of a backbone network and the interface of the overall network system. The system includes, multiple MSes; distributed antennas for perform simultaneous communications with at least one MS among the multiple MSes, and for forming one virtual cell by communicating with the multiple MSes; and a Base Station (BS), which is typically connected to the distributed antennas through optical fibers, for communicating with the MSes.
Abstract:
An apparatus that adaptively allocates transmission power for beam-forming combined with orthogonal space time block codes in a distributed wireless communication system, the apparatus including: sub-arrays for beam-forming, which are geographically distributed and each of which includes a plurality of distributed antennas placed in random groups. A central processing unit provides predetermined combinable power allocation schemes according to subsets in a plurality of the sub-arrays, identifying performances of the schemes by using information on large-scale fading of each of the sub-arrays fed back from a receiving party, setting a subset having best performance as an optimal subset according to the identified performances, and performing power allocation according thereto.