System and method for signal prediction
    1.
    发明申请
    System and method for signal prediction 有权
    信号预测系统和方法

    公开(公告)号:US20060241927A1

    公开(公告)日:2006-10-26

    申请号:US11113962

    申请日:2005-04-25

    IPC分类号: G06F13/10

    摘要: Disclosed herein are a system and method for trend prediction of signals in a time series using a Markov model. The method includes receiving a plurality of data series and input parameters, where the input parameters include a time step parameter, preprocessing the plurality of data series according to the input parameters, to form binned and classified data series, and processing the binned and classified data series. The processing includes initializing a Markov model for trend prediction, and training the Markov model for trend prediction of the binned and classified data series to form a trained Markov model. The method further includes deploying the trained Markov model for trend prediction, including outputting trend predictions. The method develops an architecture for the Markov model from the data series and the input parameters, and disposes the Markov model, having the architecture, for trend prediction.

    摘要翻译: 这里公开了使用马尔可夫模型的时间序列中的信号趋势预测的系统和方法。 该方法包括接收多个数据序列和输入参数,其中输入参数包括时间步长参数,根据输入参数对多个数据序列进行预处理,以形成分类和分类数据序列,并处理分类和分类数据 系列。 该处理包括初始化用于趋势预测的马尔科夫模型,并训练马尔可夫模型用于仓位和分类数据序列的趋势预测,形成训练马尔可夫模型。 该方法还包括部署用于趋势预测的经过训练的马尔可夫模型,包括输出趋势预测。 该方法从数据系列和输入参数开发了Markov模型的架构,并将具有架构的马尔科夫模型用于趋势预测。

    System and method for production system performance prediction
    2.
    发明申请
    System and method for production system performance prediction 有权
    生产系统性能预测的系统和方法

    公开(公告)号:US20060288260A1

    公开(公告)日:2006-12-21

    申请号:US11155098

    申请日:2005-06-17

    IPC分类号: G06F11/00

    CPC分类号: G05B23/0232

    摘要: Disclosed herein are a system, method and apparatus for reporting, making alerts and predicting fault codes generated by machines in a line. Historical fault code data is received and filtered according to particular criteria to generate filtered fault code data. Classification of the filtered fault code data into physical groups and into logical groups is followed by sorting the groups to produce fault trend data. Processing the fault trend data with a plurality of analyzers generates output including reports, alerts, and predictions of future fault code occurrences.

    摘要翻译: 这里公开了一种系统,方法和装置,用于报告,发出警报并预测一行中机器产生的故障代码。 根据特定标准接收和过滤历史故障代码数据,以生成过滤的故障代码数据。 过滤后的故障代码数据分为物理组和逻辑组,然后对组进行排序以产生故障趋势数据。 用多个分析器处理故障趋势数据可以产生包括对未来故障代码发生的报告,警报和预测的输出。

    System and Methods for Data-Driven Control of Manufacturing Processes
    3.
    发明申请
    System and Methods for Data-Driven Control of Manufacturing Processes 审中-公开
    数据驱动控制制造过程的系统和方法

    公开(公告)号:US20070090164A1

    公开(公告)日:2007-04-26

    申请号:US11567961

    申请日:2006-12-07

    IPC分类号: A47J36/02

    摘要: Systems and methods for implementing hybrid, closed-loop control that generates control values for processes defined by a limited number of function evaluations and large amounts of process and measurement noise. The described control system is applied to a stencil printing process for applying solder paste to an electronic medium such as a printed circuit board or semiconductor wafer. The control system is defined by a hybrid approach. A first, coarse algorithm is used to rapidly produce the value of a stencil printer control value resulting in a solder paste deposit having a volume within predetermined acceptable limits. After the coarse algorithm no longer produces solder paste deposits closer to a desired volume, a second, more refined estimator is used to fine tune the process. An additional transitional algorithm may be added between the coarse algorithm and refined estimator. The coarse algorithm may be implemented with a constrained-conjugated gradient search, and the refined search may be a implemented using a least-squares affine estimator or a quadratic estimator. The transitional algorithm may be implemented using a block version of a least-squares affine estimator.

    摘要翻译: 用于实现混合闭环控制的系统和方法,其产生由有限数量的功能评估和大量过程和测量噪声定义的过程的控制值。 将所述控制系统应用于用于将焊膏施加到诸如印刷电路板或半导体晶片的电子介质的模版印刷工艺。 控制系统由混合方法定义。 使用第一粗略算法来快速产生模板印刷机控制值的值,导致具有在预定可接受限度内的体积的焊膏沉积物。 在粗略算法不再产生更接近所需体积的焊膏沉积物之后,使用第二个更精细的估计器来微调该过程。 可以在粗略算法和精确估计器之间添加额外的过渡算法。 可以用约束共轭梯度搜索来实现粗略算法,并且精细搜索可以是使用最小平方仿射估计器或二次估计器来实现的。 可以使用最小平方仿射估计器的块版本来实现过渡算法。

    Curve fitting for signal estimation, prediction, and parametrization
    4.
    发明申请
    Curve fitting for signal estimation, prediction, and parametrization 有权
    用于信号估计,预测和参数化的曲线拟合

    公开(公告)号:US20070179753A1

    公开(公告)日:2007-08-02

    申请号:US11341782

    申请日:2006-01-27

    IPC分类号: G06F15/00 H03F1/26 H04B15/00

    摘要: A method and system of automatically curve fit data series to generate data signal characterization and prediction is disclosed. The method includes receiving input data including a plurality of data series and set of input parameters. The method also includes preprocessing the data series to generate preprocessed data according to a plurality of input parameters. The method further includes performing sorting and prioritization of the data series and curve fitting by a plurality of models and search and optimization algorithms on the smoothed or raw data series according to a plurality of input parameters to generate text and graphic output, and storing text and graphic output. The system includes modules for carrying out steps of the method.

    摘要翻译: 公开了一种自动曲线拟合数据序列生成数据信号表征和预测的方法和系统。 该方法包括接收包括多个数据序列和一组输入参数的输入数据。 该方法还包括对数据序列进行预处理,以根据多个输入参数生成预处理数据。 该方法还包括根据多个输入参数对多个模型进行数据序列的排序和优先排序以及对平滑或原始数据序列的搜索和优化算法的多个模型的曲线拟合,以产生文本和图形输出,以及存储文本和 图形输出。 该系统包括用于执行该方法的步骤的模块。

    Smart actuator topology
    5.
    发明申请
    Smart actuator topology 审中-公开
    智能执行机构拓扑

    公开(公告)号:US20060176823A1

    公开(公告)日:2006-08-10

    申请号:US11055370

    申请日:2005-02-10

    申请人: Leandro Barajas

    发明人: Leandro Barajas

    IPC分类号: H04L12/56 H04J3/14

    CPC分类号: G05B9/03

    摘要: A smart actuator apparatus provides controlled connection between a source and a load and includes a redundant switching network and sensors adapted for diagnosing smart actuator conditions and conditions external to the smart actuator. Switching network states are preferably establishable in accordance with multiple alternative network configurations. Network diagnostics enable recovery from establishment faults and reconfiguration of the network to provide the desired state. Source and load condition diagnosis is also enabled by the sensors.

    摘要翻译: 智能致动器装置提供源和负载之间的受控连接,并且包括冗余开关网络和适于诊断智能致动器条件和智能致动器外部状态的传感器。 交换网络状态优选地可以根据多个替代网络配置来建立。 网络诊断使得能够从建立故障恢复并重新配置网络以提供所需的状态。 传感器也可实现源和负载状态诊断。

    Quasi-redundant smart sensing topology
    6.
    发明申请
    Quasi-redundant smart sensing topology 审中-公开
    准冗余智能感应拓扑

    公开(公告)号:US20060178857A1

    公开(公告)日:2006-08-10

    申请号:US11055390

    申请日:2005-02-10

    申请人: Leandro Barajas

    发明人: Leandro Barajas

    IPC分类号: G06F15/00

    摘要: A sensor apparatus includes a plurality of sensing elements within an integrated sensing package. Each sensing element is directed at sensing the same parameter. Each sensing elements operates under a principle that is unique from the others thereby providing individual parameter measurements that are substantially immune from common mode effects due to generic influences upon the sensing elements and may exhibit different failure modes. Sensing element signals are acquired, validated and fused within the integrated sensing package, preferably with micro-controller based circuitry. A single output from the sensor apparatus is communicated directly to a programmable logic controller, microprocessor or over a network or other bus.

    摘要翻译: 传感器装置包括集成感测封装内的多个感测元件。 每个感测元件被引导以感测相同的参数。 每个感测元件在与其他传感元件独特的原理下工作,从而提供单独的参数测量,由于对感测元件的一般影响而基本上免于共模效应,并且可能呈现不同的故障模式。 感测元件信号被采集,验证并在集成感测封装内融合,优选地采用基于微控制器的电路。 来自传感器装置的单个输出直接传送到可编程逻辑控制器,微处理器或通过网络或其他总线。

    System and method for temporal data mining

    公开(公告)号:US20060106797A1

    公开(公告)日:2006-05-18

    申请号:US11199698

    申请日:2005-08-09

    IPC分类号: G06F17/30

    摘要: A system, method, and apparatus for signal characterization, estimation, and prediction comprising an integrated search algorithm that cooperatively optimizes several data mining sub-tasks, the integrated search algorithm including a machine learning model, and the method comprising processing the data for data embedding, data embedding the processed data for searching for patterns, extracting time and frequency patterns, and training the model to represent learned patterns for signal characterization, estimation, and prediction.