摘要:
A wavelength conversion crystal including: a single nonlinear optical crystal which satisfies both of a first phase-matching condition and a second phase-matching condition, the first phase-matching condition being required for first wavelength conversion to convert a fundamental wave having a wavelength of 1064 nm into a second harmonic having a wavelength of 532 nm, and the second phase-matching condition being required for second wavelength conversion to convert the light having a wavelength of 532 nm into a fourth harmonic having a wavelength of 266 nm; and a first reflective face and a second reflective face for reflecting the light having a wavelength of 532 nm generated by the first wavelength conversion to supply it to the second wavelength conversion. This approach can efficiently generate a third or higher-order harmonic with a reliable and simple configuration.
摘要:
A wavelength conversion crystal including: a single nonlinear optical crystal which satisfies both of a first phase-matching condition and a second phase-matching condition, the first phase-matching condition being required for first wavelength conversion to convert a fundamental wave having a wavelength of 1064 nm into a second harmonic having a wavelength of 532 nm, and the second phase-matching condition being required for second wavelength conversion to convert the light having a wavelength of 532 nm into a fourth harmonic having a wavelength of 266 nm; and a first reflective face and a second reflective face for reflecting the light having a wavelength of 532 nm generated by the first wavelength conversion to supply it to the second wavelength conversion. This approach can efficiently generate a third or higher-order harmonic with a reliable and simple configuration.
摘要:
A wavelength conversion apparatus in which output direction of a wavelength-converted laser beam, having a wavelength converted by a nonlinear optical crystal and emitted through an output-window, can be brought close to the direction of optical axis of the laser beam passing through the nonlinear optical crystal. In addition, axial deviation of the wavelength-converted laser beam converted by the nonlinear optical crystal and emitted through an output-window, can be reduced when the position of the nonlinear optical crystal is moved. The output facet of the nonlinear optical crystal is inclined at Brewster's angle with respect to the wavelength-converted laser beam. An output-window of a case containing the nonlinear optical crystal has a prism form in which the distance between a laser beam input facet and a laser beam output facet of the output-window is reduced along a direction in which the wavelength-converted laser beam, emitted from the nonlinear optical crystal, inclines.
摘要:
In order to form a texture structure of inverse pyramid concavities with high speed and accuracy, when a reflection preventing texture is formed on a surface of a photovoltaic power device by laser patterning of an etching resistance film and wet etching, a plurality of laser apertures are machined in a diagonal direction of a square to be a base of the intended pyramid concavity by using a pulse laser and a laser beam splitting means, and a laser aperture pitch between the squares is set to be larger than a pitch on the diagonal.
摘要:
A wavelength conversion apparatus in which output direction of a wavelength-converted laser beam, having a wavelength converted by a nonlinear optical crystal and emitted through an output-window, can be brought close to the direction of optical axis of the laser beam passing through the nonlinear optical crystal. In addition, axial deviation of the wavelength-converted laser beam converted by the nonlinear optical crystal and emitted through an output-window, can be reduced when the position of the nonlinear optical crystal is moved. The output facet of the nonlinear optical crystal is inclined at Brewster's angle with respect to the wavelength-converted laser beam. An output-window of a case containing the nonlinear optical crystal has a prism form in which the distance between a laser beam input facet and a laser beam output facet of the output-window is reduced along a direction in which the wavelength-converted laser beam, emitted from the nonlinear optical crystal, inclines.
摘要:
To provide a conveying unit that holds a workpiece and conveys the workpiece at a constant rate in one direction, a laser oscillator that emits a pulsed laser beam, a splitter that splits a pulsed laser beam into a pattern having a predetermined geometric pitch, a first deflector that scans the split pulsed laser beam in the other direction substantially orthogonal to the one direction, a second deflector that adjusts and deflects the split pulsed laser beam deflected by the first deflector on the surface to be processed in the one direction so as to scan the resultant pulsed laser beam onto the surface to be processed at a constant rate equal to a rate at which the workpiece is conveyed, and a condenser that condenses the split pulsed laser beam deflected by the second deflector onto the surface to be processed.
摘要:
Two convex lenses (61, 62), each of which has a focal length “f”, and a 90 degree polarization rotator (5) are interposed between solid-state laser elements (21, 22) of a symmetrical resonator having the two solid-state laser elements (21, 22); a space between the two lenses (61, 62) is made shorter than 2f; and distances between the respective lenses (61, 62) and centers of their adjacent solid-state laser elements (21, 22) are set substantially to “f”, to thus achieve a solid-state laser capable of stably performing high power transverse single mode oscillation desirably having power of 100 W or more. There is acquired a wavelength conversion laser that is further provided with a Q switch (3) and a polarization element (4) and that causes an output fundamental wave laser beam to enter nonlinear elements (91, 92) so as to undergo wavelength conversion, thereby producing a high power harmonic laser beam having a high frequency of; desirably, about 100 kHz.
摘要:
An optical wavelength conversion element includes a cesium-lithium-borate crystal processed into a 10-mm long optical element cut in an orientation that allows a fourth harmonic of a Nd:YAG laser to be generated. A transmittance (Ta) at 3589 cm−1 in an infrared transmission spectrum of the optical element is used as an index that indicates a content of water impurities in the crystal and is independent of a polarization direction. An actual measurement of the transmittance Ta is at least 1%, without taking into account loss at an optically polished surface of the crystal. A wavelength conversion device, a ultraviolet laser irradiation apparatus, a laser processing system, and a method of manufacturing an optical wavelength conversion element are also described.
摘要:
An image-scanning device wherein plural images of an object are picked up inverted and reduced in size by image-forming optical systems arranged to be adjacent to each other, and then restored by an image processing system. Each optical system includes a first optical element having a first focal length; an aperture member located at a focus position in a rear side of the first optical element; and a second optical element provided in a rear side of the aperture member and having a second focal length shorter than the first focal length, respectively disposed from a side of the object being picked up to a side of the image pickup device. In between optical systems, corresponding image pick up devices thereof are arranged to be adjacent to each other, the image pickup devices including a region in which the images picked up by the image pickup devices are overlapped.
摘要:
Two convex lenses (61, 62), each of which has a focal length “f”, and a 90 degree polarization rotator (5) are interposed between solid-state laser elements (21, 22) of a symmetrical resonator having the two solid-state laser elements (21, 22); a space between the two lenses (61, 62) is made shorter than 2f; and distances between the respective lenses (61, 62) and centers of their adjacent solid-state laser elements (21, 22) are set substantially to “f”, to thus achieve a solid-state laser capable of stably performing high power transverse single mode oscillation desirably having power of 100 W or more. There is acquired a wavelength conversion laser that is further provided with a Q switch (3) and a polarization element (4) and that causes an output fundamental wave laser beam to enter nonlinear elements (91, 92) so as to undergo wavelength conversion, thereby producing a high power harmonic laser beam having a high frequency of; desirably, about 100 kHz.