摘要:
The present invention provides a lightweight, thin light-emitting device having a new structure which has a plurality of display screens. Further, the invention provides a dual emission type display device which can perform a pure black display and can achieve high contrast. According to the invention, at least, both electrodes of a light-emitting element (an anode and a cathode of a light-emitting element) are highly light-transmitting at the same level, and a polarizing plate or a circularly polarizing plate is provided, thereby conducting a pure black display that is a state of no light-emission and enhancing the contrast. Moreover, unevenness of color tones in displays of the both sides, which is a problem of a full-color dual emission type display device structure, can be solved according to the invention.
摘要:
The present invention provides a lightweight, thin light-emitting device having a new structure which has a plurality of display screens. Further, the invention provides a dual emission type display device which can perform a pure black display and can achieve high contrast. According to the invention, at least, both electrodes of a light-emitting element (an anode and a cathode of a light-emitting element) are highly light-transmitting at the same level, and a polarizing plate or a circularly polarizing plate is provided, thereby conducting a pure black display that is a state of no light-emission and enhancing the contrast. Moreover, unevenness of color tones in displays of the both sides, which is a problem of a full-color dual emission type display device structure, can be solved according to the invention.
摘要:
The present invention provides a lightweight, thin light-emitting device having a new structure which has a plurality of display screens. Further, the invention provides a dual emission type display device which can perform a pure black display and can achieve high contrast. According to the invention, at least, both electrodes of a light-emitting element (an anode and a cathode of a light-emitting element) are highly light-transmitting at the same level, and a polarizing plate or a circularly polarizing plate is provided, thereby conducting a pure black display that is a state of no light-emission and enhancing the contrast. Moreover, unevenness of color tones in displays of the both sides, which is a problem of a full-color dual emission type display device structure, can be solved according to the invention.
摘要:
The present invention provides a light-emitting device having a new structure which has a plurality of display screens and further achieves lightweight and thinning. Further, the invention provides a dual emission type display device which can perform a pure black display and can achieve high contrast. According to the invention, at least, both electrodes of a light-emitting element (an anode and a cathode of a light-emitting element) are highly light-transmitting at the same level, and a polarizing plate or a circularly polarizing plate is provided, thereby conducting a pure black display that is a state of no light-emission and enhancing the contrast. Moreover, unevenness of color tones in displays of the both sides, which is a problem of a new structure, namely, a full-color dual emission type display device, can be solved according to the invention.
摘要:
As for the dual emission display device, since light is emitted to the opposite directions from a light emitting element, the both electrodes provided opposite to the light emitting element are transparent/translucent. Accordingly, difficulty in black display is created, and thus, the contrast would be reduced. That results from that the back of the display device can be seen through in black display, that is in the OFF state, since the both electrodes have transparency. Addressing the difficulty in black display with respect to an electronic device and the like including a dual emission display device achieving reduction in the thickness and light weighting, pure black display is performed by providing the dual emission display device part with a polarizing plate or a circularly polarizing plate. Further, the contrast can be improved.
摘要:
Demands such as higher definition, higher opening aperture, and higher reliability on a full-color flat panel display have been increased. Such demands are big objects in advancing higher definition (increase in the number of pixels) of a light-emitting device and miniaturization of each display pixel pitch with reduction in size of the light-emitting device. An organic compound-containing layer is selectively deposited using a laser beam which passes through openings of a mask. An irradiated substrate provided with a light absorption layer and a material layer containing an organic compound and a deposition substrate provided with first electrodes are placed so as to face each other. The light absorption layer is heated by a laser beam which has passed through the openings of the mask, and the organic compound at a position overlapping with the heated region is vaporized, and accordingly the organic compound is selectively deposited over the deposition substrate.
摘要:
Demands such as higher definition, higher opening aperture, and higher reliability on a full-color flat panel display have been increased. Such demands are big objects in advancing higher definition (increase in the number of pixels) of a light-emitting device and miniaturization of each display pixel pitch with reduction in size of the light-emitting device. An organic compound-containing layer is selectively deposited using a laser beam which passes through openings of a mask. An irradiated substrate provided with a light absorption layer and a material layer containing an organic compound and a deposition substrate provided with first electrodes are placed so as to face each other. The light absorption layer is heated by a laser beam which has passed through the openings of the mask, and the organic compound at a position overlapping with the heated region is vaporized, and accordingly the organic compound is selectively deposited over the deposition substrate.
摘要:
An object is to improve use efficiency of an evaporation material, to reduce manufacturing cost of a light-emitting device, and to reduce manufacturing time needed for a light-emitting device including a layer containing an organic compound. The pressure of a film formation chamber is reduced, a plate is rapidly heated by heat conduction or heat radiation by using a heat source, a material layer on a plate is vaporized in a short time to be evaporated to a substrate on which the material layer is to be formed (formation substrate), and then the material layer is formed on the formation substrate. The area of the plate that is heated rapidly is set to have the same size as the formation substrate and film formation on the formation substrate is completed by one application of heat.
摘要:
An object is to improve use efficiency of an evaporation material, to reduce manufacturing cost of a light-emitting device, and to reduce manufacturing time needed for a light-emitting device including a layer containing an organic compound. The pressure of a film formation chamber is reduced, a plate is rapidly heated by heat conduction or heat radiation by using a heat source, a material layer on a plate is vaporized in a short time to be evaporated to a substrate on which the material layer is to be formed (formation substrate), and then the material layer is formed on the formation substrate. The area of the plate that is heated rapidly is set to have the same size as the formation substrate and film formation on the formation substrate is completed by one application of heat.
摘要:
Demands such as higher definition, higher opening aperture, and higher reliability on a full-color flat panel display have been increased. Such demands are big objects in advancing higher definition (increase in the number of pixels) of a light-emitting device and miniaturization of each display pixel pitch with reduction in size of the light-emitting device. An organic compound-containing layer is selectively deposited using a laser beam which passes through openings of a mask. An irradiated substrate provided with a light absorption layer and a material layer containing an organic compound and a deposition substrate provided with first electrodes are placed so as to face each other. The light absorption layer is heated by a laser beam which has passed through the openings of the mask, and the organic compound at a position overlapping with the heated region is vaporized, and accordingly the organic compound is selectively deposited over the deposition substrate.