Abstract:
A steam cycle for a power station, and to a method for operating, in particular for starting, a steam cycle. The steam cycle has a high-pressure turbine, a condenser and a steam generator. The steam generator is connected to the high-pressure turbine via a first line. Live steam quick-closing valves and live steam regulating valves for supplying the high-pressure turbine are arranged in the direction of the steam flow between the steam generator and the high-pressure turbine. A starting line is arranged downstream of the high-pressure turbine in the direction of the steam flow, the starting line connecting a waste steam region downstream of the high-pressure turbine with the condenser. At least one regulator regulates a closing of a starting valve for sealing the starting line, and an opening of the live steam valve, depending on the rotational speed, a temperature and load state of the high-pressure turbine.
Abstract:
A method for testing an overspeed protection apparatus of a single-shaft system that includes: a) operating the system at nominal speed and under electrical load, wherein the load is selected to be low enough that, after dropping the load, the speed of the system rises such that the speed remains below steam turbine threshold speed lower than gas turbine threshold speed, such that first overspeed protection is triggered when the speed of the steam turbine reaches the steam turbine threshold speed, and second overspeed protection is triggered when the speed of the gas turbine reaches the gas turbine threshold speed; b) dropping the load; c) increasing the mass flow of the steam introduced into the steam turbine and/or of the fuel introduced into the gas turbine such that the speed of the steam turbine reaches the steam turbine threshold speed; d) testing whether the first overspeed protection is triggered.
Abstract:
A method for operating a steam turbine where steam turbine has at least two sub-turbines, wherein the steam turbine is paired with a steam turbine controller which has a sub-turbine controller for each of the sub-turbines, and each sub-turbine controller compares respective target values with respective actual values of the respective sub-turbine during operation in order to determine a respective control deviation for each sub-turbine.
Abstract:
A method for testing an overspeed protection apparatus of a single-shaft system that includes: a) operating the system at nominal speed and under electrical load, wherein the load is selected to be low enough that, after dropping the load, the speed of the system rises such that the speed remains below steam turbine threshold speed lower than gas turbine threshold speed, such that first overspeed protection is triggered when the speed of the steam turbine reaches the steam turbine threshold speed, and second overspeed protection is triggered when the speed of the gas turbine reaches the gas turbine threshold speed; b) dropping the load; c) increasing the mass flow of the steam introduced into the steam turbine and/or of the fuel introduced into the gas turbine such that the speed of the steam turbine reaches the steam turbine threshold speed; d) testing whether the first overspeed protection is triggered.
Abstract:
A method for operating a steam turbine where steam turbine has at least two sub-turbines, wherein the steam turbine is paired with a steam turbine controller which has a sub-turbine controller for each of the sub-turbines, and each sub-turbine controller compares respective target values with respective actual values of the respective sub-turbine during operation in order to determine a respective control deviation for each sub-turbine.
Abstract:
A steam turbine system including a steam turbine which has a turbine housing and at least one turbine shaft accommodated in the turbine housing and sealed by seals, a condenser connected fluidically to the steam turbine, an evacuation unit connected fluidically to the condenser, and a dry air source which is connected fluidically to the steam turbine, wherein the steam turbine system is designed in such a way that the evacuation unit is optionally fluidically connectable to the dry air source. A method for preserving components of a steam turbine system to prevent idle-state corrosion is also provided, which the steps: shutting down a steam turbine of the steam turbine system and sucking dry air into the steam turbine using an evacuation unit which additionally functions during intended operation of the steam turbine to exhaust a resulting amount of gas into a condenser.
Abstract:
A method for operating a steam turbine where steam turbine has at least two sub-turbines, wherein the steam turbine is paired with a steam turbine controller which has a sub-turbine controller for each of the sub-turbines, and each sub-turbine controller compares respective target values with respective actual values of the respective sub-turbine during operation in order to determine a respective control deviation for each sub-turbine.
Abstract:
A turbomachine train with two shaft parts which each have a fixedly attached grooved wheel, with a first overrunning clutch, with two rotational speed sensors and with a control device. The clutch is designed to couple and decouple the first shaft part to and from the second shaft part. The first rotational speed sensor measures the rotational speed of the first grooved wheel. The second rotational speed sensor measures the rotational speed of the second grooved wheel. The control device determines the differential angle between the first shaft part and the second shaft part and accelerates the turbomachines, with an acceleration value determined on the basis of the measured rotational speeds and on the basis of the differential angle, such that the two shaft parts couple together at a predetermined target coupling angle.
Abstract:
A method for operating a condenser, wherein the condenser is designed for condensing water vapor to form water and during operation a condensate having water accumulates in the condenser, wherein on the condensate surface a plurality of floating bodies are arranged on the condensate, wherein the floating bodies float on the condensate, wherein a large number of floating bodies are used in such a way that the condensate surface is covered, wherein the floating bodies are of spherical and/or sphere-like design, and wherein floating bodies with different sizes are used.
Abstract:
A steam cycle for a power station, and to a method for operating, in particular for starting, a steam cycle. The steam cycle has a high-pressure turbine, a condenser and a steam generator. The steam generator is connected to the high-pressure turbine via a first line. Live steam quick-closing valves and live steam regulating valves for supplying the high-pressure turbine are arranged in the direction of the steam flow between the steam generator and the high-pressure turbine. A starting line is arranged downstream of the high-pressure turbine in the direction of the steam flow, the starting line connecting a waste steam region downstream of the high-pressure turbine with the condenser. At least one regulator regulates a closing of a starting valve for sealing the starting line, and an opening of the live steam valve, depending on the rotational speed, a temperature and load state of the high-pressure turbine.