Abstract:
A method is provided for carrying out a sound test for detecting and/or analyzing material faults and/or mounting faults of at least one component, in which the component is excited, by striking, to experience vibrations which generate soundwaves, after which the generated soundwaves are detected and conclusions are drawn about material faults and/or mounting faults on the basis of the detected soundwaves, wherein the striking of the component and the detection of the vibrations are carried out using an endoscope device. In addition, embodiments of the present invention relates to an endoscope device which is configured to carry out the method.
Abstract:
A method for operating a condenser, wherein the condenser is designed for condensing water vapor to form water and during operation a condensate having water accumulates in the condenser, wherein on the condensate surface a plurality of floating bodies are arranged on the condensate, wherein the floating bodies float on the condensate, wherein a large number of floating bodies are used in such a way that the condensate surface is covered, wherein the floating bodies are of spherical and/or sphere-like design, and wherein floating bodies with different sizes are used.
Abstract:
A power station having a gas turbine, a generator driven by the gas turbine for generation of electrical power, and a hydrogen cooling circuit for discharging lost heat from the generator, wherein the hydrogen cooling circuit has a feed line for feeding hydrogen from a hydrogen tank into the generator and a discharge line for discharging heated hydrogen from the generator, and wherein the discharge line is connected to a mixing device, such that the heated hydrogen from the discharge line can be mixed with a further fuel and is fed by means of a fuel feed line to the gas turbine.
Abstract:
An electric machine having a stator and a rotor arranged on an axis of rotation and a first fan, which extends in the radial direction on one section of the axis of rotation and delivers a coolant flow into the electric machine during operation. The electric machine further includes a fan directing element, which interacts with the first fan and deflects at least a proportion of the coolant flow. Variable and demand-based cooling of the electric machine can be achieved by the fan directing element, which can in particular be adjustable.
Abstract:
A generator for a power plant and a method for cooling the generator, where the generator includes a stator and a rotor, the stator carrying conductors. The conductors for a winding overhang at least at one end of the stator and the generator has a fan for cooling the winding overhang. The fan produces a cooling air flow directed onto the winding overhang and has an axial component and a radial component.
Abstract:
A thermal power plant with a generator, includes a cooling system for the generator, wherein the waste heat released from the generator on cooling can be used profitably for operating the thermal power plant, including drying fuel, in particular for drying coal. In a method for using waste heat of a generator of a thermal power plant, the waste heat of the generator is used for drying fuel, in particular for drying coal.
Abstract:
A method for supplying an excitation current to an excitation winding of a rotor of a three-phase generator of a system for producing a three-phase alternating voltage to be fed into a power network. A pulsed excitation current is supplied to the excitation winding if a rotational frequency of the rotor deviates from a network frequency of the power network.
Abstract:
A device for deflecting at least a portion of a cooling fluid flowing axially in an intermediate space is arranged between a rotor and a stator of a rotating electrical machine, in particular of a turbogenerator, wherein at least one blade can be arranged on a prespecifiable section of an outer face of the rotor and in the intermediate space, which blade is designed and can be arranged in such a way that a portion of the cooling fluid flowing in the intermediate space can be radially deflected in the direction of the stator by said blade.
Abstract:
A cooling device for an electric motor includes at least one closed capillary tube, within which a cooling fluid is located and which is introduced into an opening of a lamination stack of the electric motor such that the capillary tube is connected to the lamination stack to conduct heat and partially projects out of the lamination stack, such that the capillary tube has a cold end disposed outside and a hot end disposed inside the lamination stack. The cooling fluid and the degree of filling of the capillary tube with the cooling fluid is chosen such that an input of heat from the lamination stack into the capillary tube leads to evaporation of the cooling fluid, and the cold end of the capillary tube is cooled such that vapour produced during the evaporation condenses and heat input into the capillary tube is dissipated out of the capillary tube.
Abstract:
A cooling device for an electric machine includes a stator winding having at least one laminated stator core, which at least one laminated stator core has at least one laminated stator core and at least one stator winding head, wherein the cooling device has a plurality of channels through which a coolant can flow, which channels are connected to a pressure accumulator at a first end and leads into an impingement cooling plate and/or into a channel of a stator winding head at a second end of the channels. An electric machine includes a rotor and a stator, which stator has at least one stator winding, which has at least one laminated stator core and at least one stator winding head; wherein the electric machine includes a cooling device. The electric machine can be a generator and/or a motor.