Abstract:
In one aspect, a video processing device includes a processor and a transmitter, for example implemented as separate integrated circuits on a printed circuit board. Pins on the processor are coupled to pins on the transmitter via a data channel, for example conductive leads on the printed circuit board. Video data is transmitted from the processor to the transmitter via this data channel, which is high speed enough to accommodate video data. The transmitter also includes an encryption engine used to encrypt the video data. Encryption control data, which determines the encryption to be applied, is transmitted from the processor to the transmitter over the same data channel as the video data. This is more secure than transmitting the encryption control data over a slower separate data channel, because the high speed video channel is harder to tamper with.
Abstract:
A mechanism for facilitating dynamic counter synchronization and packetization for data streams being communicated over communication devices is described. In one embodiment, a method includes detecting an audio/video (A/V) data stream being encrypted and/or decrypted using one or more high-bandwidth digital content protection (HDCP) engines, where the A/V data stream is communicated between a source device and a sink device. The method may further include dividing a video stream portion of the A/V data stream into a plurality of frames if the A/V data stream relates to a high-definition multimedia interface (HDMI), and synchronizing counter values with indicators within the plurality of frames.
Abstract:
In one aspect, a video processing device includes a processor and a transmitter, for example implemented as separate integrated circuits on a printed circuit board. Pins on the processor are coupled to pins on the transmitter via a data channel, for example conductive leads on the printed circuit board. Video data is transmitted from the processor to the transmitter via this data channel, which is high speed enough to accommodate video data. The transmitter also includes an encryption engine used to encrypt the video data. Encryption control data, which determines the encryption to be applied, is transmitted from the processor to the transmitter over the same data channel as the video data. This is more secure than transmitting the encryption control data over a slower separate data channel, because the high speed video channel is harder to tamper with.
Abstract:
A system for receiving and decrypting media content encrypted according to the HDCP protocol is described herein. A receiving device coupled to a plurality of content channels includes an authentication engine to authenticate each content channel and to generate an initial session key associated with each authenticated content channel. The content channels can be, for example, an HDMI channel or an MHL3 channel. A session key indicator indicating a session key used to encrypt media content is received, and an updated session key is generated. The receiving device also includes a stream cipher engine configured to decrypt received encrypted media content using the updated session key. Decrypted media content can then be displayed, for instance on a display of the receiving device.
Abstract:
Embodiments relate to routing encrypted data from a source to a sink via a router without decrypting the data in the router. The source authenticates with the router, the result of which produces a session key and a pseudo-random number. The router authenticates with the sink using the same session key and pseudo-random number. The router passes encrypted data received from the source to the sink without decryption and re-encryption.
Abstract:
A mechanism for memory reduction in picture-in-picture video generation is disclosed. A method of embodiments of the invention includes receiving, from a transmitting device, a plurality of video streams at a receiving device coupled to the transmitting device, wherein a first video stream of the plurality of video streams is designated to be displayed as a main video and one or more other video streams of the plurality of video streams are designated to be displayed as one or more sub videos to the main video. The method further includes transforming the one or more other video streams into the one or more sub videos, temporarily holding the one or more sub videos in a compressed frame buffer, and merging, via pixel replacement, the main video and the one or more sub videos into a final video image capable of being displayed on a single screen utilizing a display device, wherein pixel replacement is performed such that the one or more sub videos occupy one or more sections of pixels of screen space pixels occupied by the main video.
Abstract:
Embodiments of the invention are generally directed to transmission and detection of multi-channel signals in reduced channel format. An embodiment of a method for transmitting data includes determining whether a first type or a second type of content data is to be transmitted, where the first type of content data is to be transmitted at a first multiple of a base frequency and the second type of data is to be transmitted at a second multiple of the base frequency. The method further includes selecting one or more channels from a plurality of channels based on the type of content data, clocking a frequency on the first or second multiple of the base frequency according to the type of content data in the selected channels, modifying the content data to fit within a single output channel, and transmitting the modified data via a single output channel at the chosen multiple of the base frequency.
Abstract:
Embodiments of the invention are generally directed to an integrated mobile desktop. An embodiment of an apparatus includes a display chip to receive graphical data and produce video display signals; and a logic chip to receive data from a mobile device and the video display signals from the display chip to generate a display including at least a portion for a representation of a display of the mobile device. The logic chip provides for integration of operations for the apparatus and the mobile device using the generated display.
Abstract:
A system for detecting and mitigating bit errors in transmitted media is described herein. A source device encodes a frame of video, and generates an error code representative of a portion of the encoded frame of video. The portion of encoded frame and the error code are provided to a sink device via a communication channel, such as an HDMI or MHL3 channel. A second error code is generated by the sink device based on the portion of encoded frame, and the error code and second error code are compared to determine if the portion of encoded frame includes an error. If no error is detected, the portion of encoded frame is decoded and outputted. If an error is detected, the portion is replaced with frame data based on at least one other portion of encoded frame to produce a mitigated frame, and the mitigated frame is outputted.