Abstract:
A transmitter and receiver for communication of multimedia streams across a multi-lane communications link. The transmitter packetizes multimedia streams according to a link layer protocol and distributes the packets across multiple lanes of a communications link. The entire packet, including the header and payload, can be distributed across the lanes in an ordered sequence to increase utilization of the communication lanes. The transmitter may also packetize multiple multimedia streams and intermix the packets across the lanes of the communication lane. The receiver extracts the packets that are distributed across the multiple lanes and decodes the packets into the multimedia streams.
Abstract:
In one aspect, a video processing device includes a processor and a transmitter, for example implemented as separate integrated circuits on a printed circuit board. Pins on the processor are coupled to pins on the transmitter via a data channel, for example conductive leads on the printed circuit board. Video data is transmitted from the processor to the transmitter via this data channel, which is high speed enough to accommodate video data. The transmitter also includes an encryption engine used to encrypt the video data. Encryption control data, which determines the encryption to be applied, is transmitted from the processor to the transmitter over the same data channel as the video data. This is more secure than transmitting the encryption control data over a slower separate data channel, because the high speed video channel is harder to tamper with.
Abstract:
A mechanism for facilitating dynamic counter synchronization and packetization for data streams being communicated over communication devices is described. In one embodiment, a method includes detecting an audio/video (A/V) data stream being encrypted and/or decrypted using one or more high-bandwidth digital content protection (HDCP) engines, where the A/V data stream is communicated between a source device and a sink device. The method may further include dividing a video stream portion of the A/V data stream into a plurality of frames if the A/V data stream relates to a high-definition multimedia interface (HDMI), and synchronizing counter values with indicators within the plurality of frames.
Abstract:
Techniques and mechanisms for formatting digital audio-video (“AV”) information. In an embodiment, interface logic includes circuitry to receive digital AV information which, in one or more respects, is according to or otherwise compatible with a first interface specification. The interface logic changes a format of the digital AV information to allow for subsequent physical layer processing which is according to a second interface specification. In another embodiment, conversion logic receives analog signals according to the second interface specification and, based on such analog signals, performs digital information processing for subsequent generation of other analog signals to be transmitted according to the first interface specification.
Abstract:
A source device receives digital data comprising uncompressed video data and its associated metadata and compresses the video data. The source device generates an error code for each data word representing the compressed video data and its associated metadata. The data word and its corresponding error code are combined to form a code word. The source device organizes code words of the video data and its metadata into orthogonal data blocks and transmits the data blocks to a sink device. The sink device decodes corrupted data bits in the received data based on analysis of the error codes of the code words in the data blocks. Organizing code words into orthogonal data blocks helps isolate corrupted data bits in data blocks and enables the sink device to detect and correct corrupted data bits resulting from a single transmission error and to detect corrupted data bits resulting from multiple transmission errors.
Abstract:
A transmitting device for communicating via a multimedia communication link includes link layer circuitry to receive video data and to compress the video data into compressed video data. The transmitting device also includes a compression information circuit that generates video compression control information describing compression of the video data. The transmitting device further includes an interface that transmits signals corresponding to the compressed video data via one or more multimedia channels of the multimedia communication link and to transmit signals corresponding to the video compression control information via the multimedia communication link.
Abstract:
Embodiments of the invention are generally directed to an integrated mobile desktop. An embodiment of an apparatus includes a display chip to receive graphical data and produce video display signals; and a logic chip to receive data from a mobile device and the video display signals from the display chip to generate a display including at least a portion for a representation of a display of the mobile device. The logic chip provides for integration of operations for the apparatus and the mobile device using the generated display.
Abstract:
Techniques and mechanisms for formatting digital audio-video (“AV”) information. In an embodiment, interface logic includes circuitry to receive digital AV information which, in one or more respects, is according to or otherwise compatible with a first interface specification. The interface logic changes a format of the digital AV information to allow for subsequent physical layer processing which is according to a second interface specification. In another embodiment, conversion logic receives analog signals according to the second interface specification and, based on such analog signals, performs digital information processing for subsequent generation of other analog signals to be transmitted according to the first interface specification.
Abstract:
A system for detecting and mitigating bit errors in transmitted media is described herein. A source device encodes a frame of video, and generates an error code representative of a portion of the encoded frame of video. The portion of encoded frame and the error code are provided to a sink device via a communication channel, such as an HDMI or MHL3 channel. A second error code is generated by the sink device based on the portion of encoded frame, and the error code and second error code are compared to determine if the portion of encoded frame includes an error. If no error is detected, the portion of encoded frame is decoded and outputted. If an error is detected, the portion is replaced with frame data based on at least one other portion of encoded frame to produce a mitigated frame, and the mitigated frame is outputted.
Abstract:
Embodiments of the invention are generally directed to multiple protocol tunneling using time division operations. An embodiment of an apparatus includes an interface for communication with a second apparatus, the interface including a shared communication link; and a multiplexer to multiplex data of each of multiple protocols into time slots for transmission, the protocols including a first protocol. The time slots are distributed among the protocols, where the distribution of the time slots among the protocols includes assigning one or more time slots to the first protocol to enable the data of the first protocol to meet one or more performance requirements for the first protocol.