Abstract:
In some embodiments, a powered device includes a powered device circuit, which may include a maintain power signature (MPS) circuit configured to compare a sense current to a reference current. In a first mode, the MPS circuit may be configured to automatically generate an MPS signal when the sense current is less than the reference current.
Abstract:
In some embodiments, powered devices, circuits, and methods are disclosed that may include biasing a hot swap switch to couple a capacitor of a DC-DC converter to negative supply node when an input voltage exceeds a threshold and biasing a telephony switch to couple a positive supply node to a negative supply node when the input voltage exceeds the threshold. Further, the method may further include deactivating the hot swap switch after a period of time, and continuing to bias the telephony switch.
Abstract:
In some embodiments, powered devices, circuits, and methods are disclosed that may include biasing a hot swap switch to couple a capacitor of a DC-DC converter to negative supply node when an input voltage exceeds a threshold and biasing a telephony switch to couple a positive supply node to a negative supply node when the input voltage exceeds the threshold. Further, the method may further include deactivating the hot swap switch after a period of time, and continuing to bias the telephony switch.
Abstract:
First order gradient errors are canceled with no current source splitting by placing consecutive current sources symmetrically around the center of the array. Consecutive elements that correspond to small input amplitudes (mid-scale codes) make a smaller spatial jump than those correspond to larger signal amplitudes. Both linear and second order gradients are reduced by splitting each current cell into two and placing sub-elements symmetrically with respect to the center of the array to address the linear gradient effect. To address second order gradients, current element placement follows a pattern such that consecutive element pairs are chosen with one of the pair being placed with respect to the zero error contour of the second order gradient so as to have a positive error and the second of the pair being placed so as to have a negative error resulting in reduced second order error accumulation.
Abstract:
A driver circuit includes a first deglitcher circuit that delays a rising edge or a falling edge of an input signal according to a mode control signal and supplies a first output signal. A second deglitcher circuit receives the first output signal and delays either a rising edge or a falling edge of the first output signal by a second delay according to the mode control signal and supplies a second output signal. Logic gates combine the first and second output signals to supply gate control signals for output transistors to drive the driver circuit output. A sum of the first delay and the second delay determines the total deglitch time defining a pulse width of pulses that are suppressed by the driver circuit and the second delay determines a non-overlap time. The non-overlap time overlaps in time with the total deglitch time.
Abstract:
In some embodiments, a powered device includes a powered device circuit, which may include a maintain power signature (MPS) circuit configured to compare a sense current to a reference current. In a first mode, the MPS circuit may be configured to automatically generate an MPS signal when the sense current is less than the reference current.