Abstract:
The visibility of an object in a digital picture is enhanced by comparing an input video of the digital picture with stored information representative of the nature and characteristics of the object to develop object localization information that identifies and locates the object. The visibility of the object and the region in which the object is located is enhanced by image processing and the enhanced input video is encoded.
Abstract:
The visibility of an object in a digital picture is enhanced by comparing an input video of the digital picture with stored information representative of the nature and characteristics of the object to develop object localization information that identifies and locates the object. The input video and the object localization information are encoded and transmitted to a receiver where the input video and the object localization information are decoded and the decoded input video is enhanced by the decoded object localization information
Abstract:
A method is disclosed for detecting and locating players in soccer video frames without errors caused by artifacts by a shape analysis-based approach to identify the players and the ball from roughly extracted foregrounds obtained by color segmentation and connected component analysis, by performing a Euclidean distance transform to extract skeletons for every foreground blob, by performing a shape analysis to remove false alarms (non-players and non-ball), and then by performing skeleton pruning and a reverse Euclidean distance transform to cut-off the artifacts primarily caused by playing field lines.
Abstract:
A method is disclosed for detecting and locating players in soccer video frames without errors caused by artifacts by a shape analysis-based approach to identify the players and the ball from roughly extracted foregrounds obtained by color segmentation and connected component analysis, by performing a Euclidean distance transform to extract skeletons for every foreground blob, by performing a shape analysis to remove false alarms (non-players and non-ball), and then by performing skeleton pruning and a reverse Euclidean distance transform to cut-off the artifacts primarily caused by playing field lines.
Abstract:
A method and associated apparatus for using a trajectory-based technique to detect a moving object in a video sequence at incorporates human interaction through a user interface. The method comprises steps of identifying and evaluating sets of connected components in a video frame, filtering the list of connected components by comparing features of the connected components to predetermined criteria, identifying candidate trajectories across multiple frames, evaluating the candidate trajectories to determine a selected trajectory, eliminating incorrect trajectories through use of the interface and processing images in said video sequence responsive to the evaluating and eliminating steps.
Abstract:
One or more implementations access a digital image containing one or more bands. Adjacent bands of the one or more bands have a difference in color resulting in a contour between the adjacent bands. The one or more implementations apply an algorithm to at least a portion of the digital image for reducing visibility of a contour. The algorithm is based on a value representing the fraction of pixels in a region of the digital image having a particular color value.
Abstract:
In an implementation, a pixel is selected from a target digital image. Multiple candidate pixels, from one or more digital images, are evaluated based on values of the multiple candidate pixels. For the selected pixel, a corresponding set of pixels is determined from the multiple candidate pixels based on the evaluations of the multiple candidate pixels and on whether a predetermined threshold number of pixels have been included in the corresponding set. Further for the selected pixel, a substitute value is determined based on the values of the pixels in the corresponding set of pixels. Various implementations described provide adaptive pixel-based spatio-temporal filtering of images or video to reduce film grain or noise. Implementations may achieve an “even” amount of noise reduction at each pixel while preserving as much picture detail as possible by, for example, averaging each pixel with a constant number, N, of temporally and/or spatially correlated pixels.
Abstract:
A method of object-aware video coding is provided that comprises the steps of: receiving a video sequence having a plurality of frames; selecting at least two frames; determing total area of at least one object of interest in each of the at least two frames; comparing the total area to a threshold area; classifying each of the at least two frames as being a low object weighted frame or a high object weighted frame, low object weighted frames being frames having the total area exceeding the threshold area and high object weighted frames being frame having the total area not exceeding the threshold area; and encoding each low object weighted frame according to one encoding mode and encoding each high object weighted frame according to a different encoding mode.
Abstract:
Several implementations relate to view synthesis with heuristic view merging for 3D Video (3DV) applications. According to one aspect, a first candidate pixel from a first warped reference view and a second candidate pixel from a second warped reference view are assessed based on at least one of a backward synthesis process to assess a quality of the first and second candidate pixels, a hole distribution around the first and second candidate pixels, or on an amount of energy around the first and second candidate pixels above a specified frequency. The assessing occurs as part of merging at least the first and second warped reference views into a signal synthesized view. Based on the assessing, a result is determined for a given target pixel in the single synthesized view. The result may be determining a value for the given target pixel, or marking the given target pixel as a hole.
Abstract:
A method for propagating user-provided foreground-background constraint information for a first video frame to subsequent frames allows extraction of moving foreground objects with minimal user interaction. Video matting is performed wherein constraints derived from user input with respect to a first frame are propagated to subsequent frames using the estimated alpha matte of each frame. The matte of a frame is processed in order to arrive at a rough foreground-background segmentation which is then used for estimating the matte of the next frame. At each frame, the propagated constraints are used by an image matting method for estimating the corresponding matte which is in turn used for propagating the constraints to the next frame, and so on.