摘要:
A super-resolution material is formed in only a data pit, in a low temperature state of the super-resolution material, reflectivity of each of a pit portion and a space portion and an optical phase difference therebetween are set to be sufficiently small, in a high temperature state, and at least the optical phase difference between the pit and the space is set to be larger than the aforementioned value in an absolute value. Accordingly, by conducting irradiation with an appropriate read power by which substantially only one data track width can be heated to a high temperature state, a good push-pull signal can be obtained even with a track pitch being less than a diffraction limit. At the same time, by an optical device having functions such as a switching means with a DPP type, an offset correcting means of the push-pull signal due to lens shift, a shaping means of the push-pull signal, a learning means of read power, and the like, there is provided an optical disk device that corresponds to the optical disk medium of the present invention and achieves an increase in capacity.
摘要:
A super-resolution material is formed in only a data pit, in a low temperature state of the super-resolution material, reflectivity of each of a pit portion and a space portion and an optical phase difference therebetween are set to be sufficiently small, in a high temperature state, and at least the optical phase difference between the pit and the space is set to be larger than the aforementioned value in an absolute value. Accordingly, by conducting irradiation with an appropriate read power by which substantially only one data track width can be heated to a high temperature state, a good push-pull signal can be obtained even with a track pitch being less than a diffraction limit. At the same time, by an optical device having functions such as a switching means with a DPP type, an offset correcting means of the push-pull signal due to lens shift, a shaping means of the push-pull signal, a learning means of read power, and the like, there is provided an optical disk device that corresponds to the optical disk medium of the present invention and achieves an increase in capacity.
摘要:
In a super-resolution optical disk for the purpose of achieving an increase in the density of recording data by reproducing a recording mark smaller than optical resolution, the optimum reproduction power needs to be determined since the quality of a super-resolution reproduced signal strongly depends on the reproduction laser power. However, since the track error signal required for tracking servo also depends on the reproduction power, there is a need for a method for determining the reproduction power taking into account both the stabilization of tracking servo and a quality improvement of the reproduction signal. The reproduction power is changed under conditions with focusing servo applied but without application of tracking servo. Thereby, a cross track signal is detected to identify a reproduction power region that leads to quality improvement of both a reproduction signal and a track error signal.
摘要:
When a super resolution technology for optical disks is used in a situation where optical disk management information is formed with a signal that cannot be reproduced by a reproduction method based on a conventional optical disk technology, optical disk drives cannot make recording adjustments and/or reproduction adjustments.An optical disk drive uses an optical disk that forms a management information signal with pits not smaller in size than optical resolution and can be read by a reproduction method based on a conventional optical disk technology. When the optical disk drive records information onto or reproduces information from the optical disk having the super resolution region, it is possible to make proper recording adjustments or reproduction adjustments and perform a proper recording operation or reproducing operation in an optical disk's information region for user information recording or reproduction.
摘要:
By referring to a table of reproducing conditions and medium specific parameters, stored in an optical disc or optical disc apparatus and/or generated by the optical disc apparatus, the medium specific parameters to be used for performing reproducing power adjustment are changed in accordance with the reproducing condition to execute reproducing power adjustment.
摘要:
A super resolution optical disk medium having an array of pits less than or equal in size to optical resolution is disclosed, wherein the pits are read by using heat generated within the medium upon irradiation of a read laser beam. A playback power determination method for use with the disk is also disclosed. A playback power level at which super resolution occurs is determined based on a bit error rate (bER) of the optical disk and the amplitude of a playback signal having a predefined signal pattern. In the optical disk, NR/SR is set to one (1) or less, where SR is the signal obtained from a high-temperature region in case the playback is performed in the state that the super resolution occurs, and NR is the amplitude of a signal which is read in the absence of such super resolution.
摘要:
An optical disc using super-resolution effects that achieves higher-density recording exceeding the optical resolution suffers from the signal-quality degradation caused by the normal resolution component included in the reproduction signal. To address this problem, a data reproduction method is provided. In the method, characteristic error patterns are identified and parity check codes in conformity with run-length limited coding are used to carry out efficient and reliable error correction. Error patterns caused by the normal resolution crosstalk are localized in the leading edges of a mark following a long space and in the trailing edges of a long mark. Whether an error exists in the data is determined by use of the parity check codes. When an error occurs, a pattern in which an error is most likely to occur is selected from the above-mentioned patterns by taking account of the edge shift direction, and then the error therein is corrected.
摘要:
An optical disc using super-resolution effects that achieves higher-density recording exceeding the optical resolution suffers from the signal-quality degradation caused by the normal resolution component included in the reproduction signal. To address this problem, a data reproduction method is provided. In the method, characteristic error patterns are identified and parity check codes in conformity with run-length limited coding are used to carry out efficient and reliable error correction. Error patterns caused by the normal resolution crosstalk are localized in the leading edges of a mark following a long space and in the trailing edges of a long mark. Whether an error exists in the data is determined by use of the parity check codes. When an error occurs, a pattern in which an error is most likely to occur is selected from the above-mentioned patterns by taking account of the edge shift direction, and then the error therein is corrected.
摘要:
A disc structure for making an inverted optical response through a super-resolution process using a recorded mark portion and a space portion, which is realized to amplify a signal amplitude and solve a conventional problem that a conventional super-resolution technique can obtain only small signals, since the super-resolution area is reduced to realize high density recording of data.
摘要:
In a super-resolution optical disk for the purpose of achieving an increase in the density of recording data by reproducing a recording mark smaller than optical resolution, the optimum reproduction power needs to be determined since the quality of a super-resolution reproduced signal strongly depends on the reproduction laser power. However, since the track error signal required for tracking servo also depends on the reproduction power, there is a need for a method for determining the reproduction power taking into account both the stabilization of tracking servo and a quality improvement of the reproduction signal. The reproduction power is changed under conditions with focusing servo applied but without application of tracking servo. Thereby, a cross track signal is detected to identify a reproduction power region that leads to quality improvement of both a reproduction signal and a track error signal.