摘要:
This invention relates to an isolated nucleic acid fragment encoding a carbon catabolite repression polypeptide. The invention also relates to the construction of a chimeric gene encoding all or a portion of the carbon catabolite repression polypeptide, in sense or antisense orientation, wherein expression of the chimeric gene results in production of altered levels of the carbon catabolite repression polypeptide in a transformed host cell.
摘要:
An acyltransferase is provided, suitable for use in the manufacture of microbial oils enriched in omega fatty acids in oleaginous organisms. Specifically, the gene encoding diacylglycerol acyltransferase (DGAT2) has been isolated from Mortierella alpina. This gene encodes an enzyme that participates in the terminal step in oil biosynthesis in fungi and yeast and is expected to play a key role in altering the quantity of long-chain polyunsaturated fatty acids produced in oils of oleaginous organisms. Most desirably, the substrate specificity of the instant DGAT2 will be particularly useful to enable accumulation of long-chain PUFAs having chain lengths equal to or greater than C20 in oleaginous yeast, such as Yarrowia lipolytica.
摘要:
Engineered strains of the oleaginous yeast Yarrowia lipolytica capable of producing greater than 25% eicosapentaenoic acid (EPA, an ω-3 polyunsaturated fatty acid) in the total oil fraction are described. These strains comprise various chimeric genes expressing heterologous desaturases, elongases and acyltransferases and optionally comprise various native desaturase and acyltransferase knockouts to enable synthesis and high accumulation of EPA. Production host cells are claimed, as are methods for producing EPA within said host cells.
摘要:
Engineered strains of the oleaginous yeast Yarrowia lipolytica capable of producing greater than 10% arachidonic acid (ARA, an ω-6 polyunsaturated fatty acid) in the total oil fraction are described. These strains comprise various chimeric genes expressing heterologous desaturases, elongases and acyltransferases, and optionally comprise various native desaturase and acyltransferase knockouts to enable synthesis and high accumulation of ARA. Production host cells are claimed, as are methods for producing ARA within said host cells.
摘要:
An engineered strain of the oleaginous yeast Yarrowia lipolytica capable of producing greater than 5.6% docosahexaenoic acid acid (DHA, an w-3 polyunsaturated fatty acid) in the total oil fraction is described. This strain comprises various chimeric genes expressing heterologous desaturases, elongases and acyltransferases and optionally comprises various native desaturase and acyltransferase knockouts to enable synthesis and high accumulation of DHA. Production host cells are claimed, as are methods for producing DHA within said host cells.
摘要:
Glycerol-3-phosphate o-acyltransferase (GPAT) participates in the first step of oil biosynthesis and is expected to play a key role in altering the quantity of long-chain polyunsaturated fatty acids (PUFAs) produced in oils of oleaginous organisms. The present application provides a nucleic acid fragment isolated from Mortierella alpina encoding a GPAT that is suitable for use in the manufacture of oils enriched in omega fatty acids in oleaginous organisms. Most desirably, the substrate specificity of the instant GPAT will be particularly useful to enable accumulation of long-chain PUFAs having chain lengths equal to or greater than C20 in oleaginous yeast, such as Yarrowia lipolytica.