摘要:
Methods are provided in which a standby server, a first main server, and a second main server to control shared input/output (I/O) adapters in a storage system are provided. The standby server is in communication with the first main server and the second main server, and the storage system is configured to operate as a dual node active system. The methods include activating the standby server in response to receiving a communication from the first main server of a fail mode of the second main server. Systems and physical computer storage media are also provided.
摘要:
The population of data to be admitted into secondary data storage cache of a data storage system is controlled by determining heat metrics of data of the data storage system. If candidate data is submitted for admission into the secondary cache, data is selected to tentatively be evicted from the secondary cache; candidate data provided to the secondary data storage cache is rejected if its heat metric is less than the heat metric of the tentatively evicted data; and candidate data submitted for admission to the secondary data storage cache is admitted if its heat metric is equal to or greater than the heat metric of the tentatively evicted data.
摘要:
Exemplary method, system, and computer program product embodiments for efficient track destage in secondary storage in a more effective manner, are provided. In one embodiment, by way of example only, for temporal bits employed with sequential bits for controlling the timing for destaging the track in a primary storage, the temporal bits and sequential bits are transferred from the primary storage to the secondary storage. The temporal bits are allowed to age on the secondary storage. Additional system and computer program product embodiments are disclosed and provide related advantages.
摘要:
Various embodiments for movement of partial data segments within a computing storage environment having lower and higher levels of cache by a processor are provided. In one such embodiment, a whole data segment containing one of the partial data segments is promoted to both the lower and higher levels of cache. Requested data of the whole data segment is split and positioned at a Most Recently Used (MRU) portion of a demotion queue of the higher level of cache. Unrequested data of the whole data segment is split and positioned at a Least Recently Used (LRU) portion of the demotion queue of the higher level of cache. The unrequested data is pinned in place until a write of the whole data segment to the lower level of cache completes. Additional system and computer program product embodiments are disclosed and provide related advantages.
摘要:
Systems and methods for scanning ports for work are provided. One system includes one or more processors, multiple ports, a first tracking mechanism, and a second tracking mechanism for tracking high priority work and low priority work, respectively. The processor(s) is/are configured to perform the below method. One method includes scanning the ports, finding high priority work on a port, and accepting or declining the high priority work. The method further includes changing a designation of the processor to TRUE in the first tracking mechanism if the processor accepts the high priority work such that the processor is allowed to perform the high priority work on the port. Also provided are computer storage mediums including computer code for performing the above method.