摘要:
A wash-coat (16) for use as a support for an active catalyst species (18) and a catalytic combustor component (10) incorporating such wash-coat. The wash-coat is a solid solution of alumina or alumina-based material (Al2O3-0-3 wt % La2O3) and a further oxide exhibiting a coefficient of thermal expansion that is lower than that exhibited by alumina. The further oxide may be silicon dioxide (2-30 wt % SiO2), zirconia silicate (2-30 wt % ZrSiO4), neodymium oxide (0-4 wt %), titania (Al2O3-3-40% TiO2) or alumina-based magnesium aluminate spinel (Al2O3-25 wt % MgO) in various embodiments. The active catalyst species may be palladium and a second metal in a concentration of 10-50% of the concentration of the palladium.
摘要翻译:用作活性催化剂种类(18)和催化燃烧器组分(10)的载体的洗涂层(16),其结合有这种洗衣层。 洗涤涂层是氧化铝或氧化铝基材料(Al 2 O 3 -0-3重量%La 2 O 3)的固溶体和表现出比氧化铝表现出的热膨胀系数更高的氧化物。 另外的氧化物可以是二氧化硅(2-30重量%SiO 2),氧化硅硅酸盐(2-30重量%ZrSiO 4),氧化钕(0-4重量%),二氧化钛(Al 2 O 3 -3-40%TiO 2)或氧化铝 - 铝酸镁尖晶石(Al2O3-25wt%MgO)。 活性催化剂种类可以是钯,浓度为钯浓度的10-50%的第二种金属。
摘要:
A component for use in a combustion turbine (10) is provided that includes a substrate (212) and an abradable coating system (216) deposited on the substrate (212). A planar proximity sensor (250) may be deposited beneath a surface of the abradable coating system (216) having circuitry (252) configured to detect intrusion of an object (282) into the abradable coating system (216). A least one connector (52) may be provided in electrical communication with the planar proximity sensor (250) for routing a data signal from the planar proximity sensor (250) to a termination location (59). A plurality of trenches (142) may be formed at respective different depths below the surface of the abradable coating system (216) with a planar proximity sensor (250) deposited within each of the plurality of trenches (142). A processing module (34) may be programmed for receiving data from the planar proximity sensor (250) and calculating a clearance between a row of blades (18,19) within a combustion turbine and the planar proximity sensor (250). The processing module (34) may control a clearance between the row of blades (18) and a ring segment (284) based on data received from the planar proximity sensors (250).
摘要:
A component for use in a combustion turbine (10) is provided that includes a substrate (212) and a microelectromechanical system (MEMS) device (50, 250) affixed to the substrate (212). At least one connector (52) may be deposited in electrical communication with the MEMS device (50, 250) for routing a data signal from the MEMS device (50, 250) to a termination location (59). A barrier coating (216) may be deposited on the substrate (212) wherein the MEMS device (50, 250) is affixed beneath a surface of the barrier coating (216). A plurality of trenches (142) may be formed in the barrier coating (216) at respective different depths below the surface of the barrier coating (216) and a MEMS device (50, 250) deposited within each of the plurality of trenches (142). A monitoring system (30) is provided that may include a processing module (34) programmed for receiving data from the MEMS device (50, 250).
摘要:
Aspects of the invention relate to a system for monitoring the wear of a component. A conductor can be embedded in the component at a depth from a surface of the component. In one embodiment, the conductor can be operatively connected to a power source to form an electrical circuit. The resistance across the conductor can be measured. As the component contacts a second component, the component can begin to wear. Once the wear progresses to the conductor, changes in the measured resistance can result. Thus, an operator can be alerted that the component has worn to a certain point and that service may be needed. Alternatively, impedance can be measured across the conductor. Because the dielectric permeability of the material surrounding the conductor can affect impedance, changes in impedance can occur as the surface material of the component is worn away.
摘要:
A method of instrumenting a first component (210) for use in a combustion turbine engine (10) wherein the first component (210) has a surface contacted by a second component during operation of the combustion turbine engine (10). The method may include depositing an insulating layer (260) on the surface of the first component (210) and depositing a first conductive lead (232, 254) on the insulating layer (260). A piezoelectric material (230) may be deposited in electrical communication with the first conductive lead (232, 254) and a second conductive lead (236, 256) may be deposited in electrical communication with the piezoelectric material (230) and be insulated from the first conductive lead (232, 254) to form a sensor (50) for detecting pressure exerted on the surface of the first component (210) during operation of the combustion turbine engine (10).
摘要:
A turbine component, such as a turbine blade having a metal substrate (22) is coated with a metal MCrAlY alloy layer (24) and then a thermal barrier layer (20) selected from LaAlO3, NdAlO3, La2Hf2O7, Dy3Al5O12, HO3Al3O12, ErAlO3, GdAlO3, Yb2Ti2O7, LaYbO3, Gd2Hf2O7 or Y3Al5O12.
摘要翻译:涡轮机部件,例如具有金属基体(22)的涡轮机叶片涂覆有金属MCrAlY合金层(24),然后涂覆选自LaAlO 3,NdAlO 3,La 2 Hf 2 O 7,Dy 3 Al 5 O 12,HO 3 Al 3 O 12,ErAlO 3, GdAlO 3,Yb 2 Ti 2 O 7,LaYbO 3,Gd 2 Hf 2 O 7或Y 3 Al 5 O 12。
摘要:
A device (10) having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10) and is not soluble with the underlying ceramic layer (16). For a YSZ ceramic layer (16) the sintering resistant layer (22) may preferably be aluminum oxide or yttrium aluminum oxide, deposited as a continuous layer or as nodules.
摘要:
The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.
摘要:
The present invention generally describes multilayer coating systems comprising a composite metal/metal oxide bond coat layer. The coating systems may be used in gas turbines.
摘要:
A hole (3) formed in a superalloy turbine blade (12) is sealed by providing a superalloy plug (4), machining the hole to be of a configuration can receive the plug therein, and bonding the plug to the turbine blade. The plug can be of a threaded or unthreaded configuration and can be of a tapered or straight configuration. The plug is bonded to the hole by applying a bonding catalyst to one or both of the plug and the hole or by positioning the bonding catalyst therebetween, and providing appropriate treatment to the bonding catalyst, such as heating or other treatment, to cause the bonding catalyst to form a bond between the plug and the turbine blade to form a joint therebetween. Any of a variety of known bonds can be employed to form the joint. The plug additionally may be pre-cooled prior to insertion thereof into the hole in the turbine blade, or alternatively may be of a coefficient of thermal expansion that is greater than that of the turbine blade.