摘要:
A tritium sensor and method are provided. The sensor involves the use of an electrode having a semiconductor coating that has properties selected to allow the passage of beta particles at the particular energy level for tritium through the semiconductor layer to a conductive electrode core and produce current. Current flow in the core can be measured by a current measuring device. The current flow can be correlated to the concentration of tritium in the gas surrounding the electrode to provide an indication of the amount of tritium present. The device can be used in a static system or a system in which the tritium containing gas flows. The apparatus provides real time readings of the tritium concentration in gas.
摘要:
The invention is directed to a method for producing Palladium alloy composite membranes that are useful in applications that involve the need to separate hydrogen from a gas mixture. The method includes providing a substrate for supporting a palladium alloy film, seeding the support surface with palladium crystallites to produce an activated surface, first plating, over the activated surface, a palladium film, second plating, over the palladium film, an alloying material other than silver, and annealing the porous substrate, palladium film, and alloying material so that there is intermetallic diffusion of the alloying material into the palladium film to produce a palladium alloy film over the porous substrate.
摘要:
A device for hydrogen separation has a porous support and hydrogen separation material on the support. The support is prepared by heat treatment of metal microparticles, preferably of iron-based or nickel-based alloys that also include aluminum and/or yttrium. The hydrogen separation material is then deposited on the support. Preferred hydrogen separation materials include metals such as palladium, alloys, platinum, refractory metals, and alloys.
摘要:
A tubular hydrogen permeable metal membrane and fabrication process comprises obtaining a metal alloy foil having two surfaces, coating the surfaces with a metal or metal alloy catalytic layer to produce a hydrogen permeable metal membrane, sizing the membrane into a sheet with two long edges, wrapping the membrane around an elongated expandable rod with the two long edges aligned and overlapping to facilitate welding of the two together, placing the foil wrapped rod into a surrounding fixture housing with the two aligned and overlapping foil edges accessible through an elongated aperture in the surrounding fixture housing, expanding the elongated expandable rod within the surrounding fixture housing to tighten the foil about the expanded rod, welding the two long overlapping foil edges to one another generating a tubular membrane, and removing the tubular membrane from within the surrounding fixture housing and the expandable rod from with the tubular membrane.