摘要:
An apparatus for detecting the probable existence, location, and type of defects in a workpiece is described. The apparatus includes a sensor subsystem, an optimizer, a control subsystem, and a computer system having a processor and computer readable memory. Sensor subsystem senses a first section of the workpiece and produces signals corresponding to a physical characteristic of the workpiece. The computer system is configured to generate a workpiece model based on the signals produced by the sensor subsystem. In an alternate embodiment, a defect assembler can be provided to merge signals from a plurality of sensor subsystems. The defect assembler can also be configured to generate the workpiece data model. The optimizer is configured to generate workpiece segmentation recommendations based on the workpiece data model. The processor is configured with a first producer thread program which, in response to the receipt of a first set of signals by the computer system, receives a data subscription request from a subsystem which uses data and transmits the signals from the computer readable memory to the generator of the data subscription request. The processor is further configured to generate a second producer thread in response to storage of a second set of signals in the computer readable memory. The second producer thread is configured to receive one of the data subscription requests and selectively send the second set of signals to the generator of the data subscription request. A tracking device for tracking selective kinematics of a workpiece moving through a plant is also disclosed. The tracking device includes an encoder wheel configured to tangentially contact a workpiece and rotate at an angular velocity coincident with the linear velocity of the workpiece. The tracking apparatus further includes a drive mechanism for driving the encoder wheel at a first angular velocity approaching the angular velocity of the encoder wheel which is coincident with the linear velocity of the workpiece. The tracking device also includes a signal generator configured to interact with the encoder wheel and generate a signal in response to the angular velocity of the encoder wheel. The tracking apparatus can be incorporated into the apparatus for detecting defects within a workpiece by providing the signal from the signal generator to the control subsystem.
摘要:
An apparatus for detecting the probable existence, location, and type of defects in a workpiece is described. The apparatus includes a sensor subsystem, an optimizer, a control subsystem, and a computer system having a processor and computer readable memory. Sensor subsystem senses a first section of the workpiece and produces signals corresponding to a physical characteristic of the workpiece. The computer system is configured to generate a workpiece model based on the signals produced by the sensor subsystem. In an alternate embodiment, a defect assembler can be provided to merge signals from a plurality of sensor subsystems. The defect assembler can also be configured to generate the workpiece data model. The optimizer is configured to generate workpiece segmentation recommendations based on the workpiece data model. The processor is configured with a first producer thread program which, in response to the receipt of a first set of signals by the computer system, receives a data subscription request from a subsystem which uses data and transmits the signals from the computer readable memory to the generator of the data subscription request. The processor is further configured to generate a second producer thread in response to storage of a second set of signals in the computer readable memory. The second producer thread is configured to receive one of the data subscription requests and selectively send the second set of signals to the generator of the data subscription request. A tracking device for tracking selective kinematics of a workpiece moving through a plant is also disclosed. The tracking device includes an encoder wheel configured to tangentially contact a workpiece and rotate at an angular velocity coincident with the linear velocity of the workpiece. The tracking apparatus further includes a drive mechanism for driving the encoder wheel at a first angular velocity approaching the angular velocity of the encoder wheel which is coincident with the linear velocity of the workpiece. The tracking device also includes a signal generator configured to interact with the encoder wheel and generate a signal in response to the angular velocity of the encoder wheel. The tracking apparatus can be incorporated into the apparatus for detecting defects within a workpiece by providing the signal from the signal generator to the control subsystem.
摘要:
An apparatus for detecting the probable existence, location, and type of defects in a workpiece is described. The apparatus includes a sensor subsystem, an optimizer, a control subsystem, and a computer system having a processor and computer readable memory. The sensor subsystem senses a first section of the workpiece and produces signals corresponding to a physical characteristic of the workpiece. The computer system is configured to generate a workpiece model based on the signals produced by the sensor subsystem. In an alternate embodiment, a defect assembler can be provided to merge signals front a plurality of sensor subsystems. The defect assembler can also be configured to generate the workpiece data model. The optimizer is configured to generate workpiece segmentation recommendations based on the workpiece data model.
摘要:
A generic, scalable consumer subsystem/producer subsystem interface controller for exchanging data between at least one producer subsystem configured to produce a set of services characterized in a producer generated data set, and at least on consumer subsystem configured to consume the set of services, including an object-oriented producer application program interface configured for use on a multi-threaded, client-server operating system, wherein producer routines are configured to: initialize producer server objects maid producer client objects; receive requests for data from a consumer subsystem via the producer client objects; send acknowledgments to a consumer subsystem in response to requests from the consumer subsystem via the producer server objects; send data to a consumer subsystem in response to requests from the consumer subsystem via the producer server objects; and wherein consumer routines are configured to: initialize consumer server objects and consumer client objects; send requests for data to a producer subsystem via the consumer server objects; receive acknowledgments from a producer subsystem in response to requests from the producer subsystem via the consumer client objects; and, receive data from a producer subsystem in response to requests from the producer subsystem via the consumer client objects.
摘要:
An apparatus for detecting the probable existence, location, and type of defects in a workpiece is described. The apparatus includes a sensor subsystem, an optimizer, a control subsystem, and a computer system having a processor and computer readable memory. Sensor subsystem senses a first section of the workpiece and produces signals corresponding to a physical characteristic of the workpiece. The computer system is configured to generate a workpiece model based on the signals produced by the sensor subsystem. In an alternate embodiment, a defect assembler can be provided to merge signals from a plurality of sensor subsystems. The defect assembler can also be configured to generate the workpiece data model. The optimizer is configured to generate workpiece segmentation recommendations based on the workpiece data model. The processor is configured with a first producer thread program which, in response to the receipt of a first set of signals by the computer system, receives a data subscription request from a subsystem which uses data and transmits the signals from the computer readable memory to the generator of the data subscription request. The processor is further configured to generate a second producer thread in response to storage of a second set of signals in the computer readable memory. The second producer thread is configured to receive one of the data subscription requests and selectively send the second set of signals to the generator of the data subscription request. A tracking device for tracking selective kinematics of a workpiece moving through a plant is also disclosed. The tracking device includes an encoder wheel configured to tangentially contact a workpiece and rotate at an angular velocity coincident with the linear velocity of the workpiece. The tracking apparatus further includes a drive mechanism for driving the encoder wheel at a first angular velocity approaching the angular velocity of the encoder wheel which is coincident with the linear velocity of the workpiece. The tracking device also includes a signal generator configured to interact with the encoder wheel and generate a signal in response to the angular velocity of the encoder wheel. The tracking apparatus can be incorporated into the apparatus for detecting defects within a workpiece by providing the signal from the signal generator to the control subsystem.
摘要:
Embodiments provide methods, apparatuses, and systems for identification of wood species based on one or more pitch characteristics. A workpiece may be exposed to a beam of radiation from a radiation source. The beam of radiation may cause pitch on or within the workpiece to emit visible light. The emitted light may be imaged and used to determine pitch content, pitch location, a pitch deposition pattern, pitch emission wavelength, and/or other characteristics of the workpiece. One or more of these characteristics may be used to identify a tree species or group of tree species from which the workpiece was cut or manufactured.
摘要:
Embodiments provide methods, apparatuses, and systems for identification of wood species based on one or more pitch characteristics. A workpiece may be exposed to a beam of radiation from a radiation source. The beam of radiation may cause pitch on or within the workpiece to emit visible light. The emitted light may be imaged and used to determine pitch content, pitch location, a pitch deposition pattern, pitch emission wavelength, and/or other characteristics of the workpiece. One or more of these characteristics may be used to identify a tree species or group of tree species from which the workpiece was cut or manufactured.