摘要:
Systems, methods, and apparatus for determining a color of marking material dispensed by a marking device onto a surface to mark a presence or an absence of at least one underground facility within a dig area that is planned to be excavated or disturbed during excavation activities. In some embodiments, one or more camera systems (e.g., digital video cameras) are mounted on a marking device to capture information (e.g., one or more of image information, color information, motion information and light level information) relating to the surface being marked. The camera system(s) may be mounted near a nozzle of a marking material dispenser, so as to capture information relating to freshly dispensed marking material on the surface being marked. The captured information may be analyzed to determine a color of the freshly dispensed marking material, which may then be correlated with a type of facilities being marked.
摘要:
Systems, methods, and apparatus for performing surface type detection in connection with locate and marking operations. In some embodiments, one or more sensors may be employed to collect information regarding a ground surface on which marking material is to be dispensed which is then analyzed to provide an estimate of a type of the surface. For example, a still-image or video camera may be used as a sensor that detects visible light reflecting from a surface. One or more images captured by the camera may be analyzed using analysis software to identify one or more characteristics indicative of a surface type. As another example, one or more radiation sensors may be employed to measure an amount of electromagnetic radiation reflected by the sensed surface one or more selected wavelengths or ranges of wavelengths to identify a spectral signature that may also be indicative of a surface type.
摘要:
Marking material is dispensed onto a target surface using a marking device, and one or more images are captured by one or more camera systems attached to the marking device. The image(s) is/are analyzed to determine tracking information indicative of the a motion or an orientation of the marking device. The tracking information is analyzed to determine marking information relating to the dispensed marking material. In one example, the image(s) is/are analyzed to obtain an optical flow plot indicative of a path on the target surface traversed by the marking device. One or more reference plots respectively representing a plurality of reference marking patterns are compared to one or more portions of the optical flow plot to identify at least one reference marking pattern that substantially matches the portion(s) of the optical flow plot.
摘要:
A position of a marking device is monitored by receiving start position information indicative of an initial position of the marking device, capturing one or more images using one or more camera systems attached to the marking device, and analyzing the image(s) to determine tracking information indicative of a motion of the marking device. The tracking information and the start position information are then analyzed to determine current position information. In one example, images of a target surface over which the marking device is carried are analyzed pursuant to an optical flow algorithm to provide estimates of relative position for a dead-reckoning process, and the current position information is determined based on the estimates of relative position and the start position information.
摘要:
Marking material is dispensed onto a target surface using a marking device, and one or more images are captured by one or more camera systems attached to the marking device. The image(s) is/are analyzed to determine tracking information indicative of the a motion or an orientation of the marking device. The tracking information is analyzed to determine marking information relating to the dispensed marking material. In one example, the image(s) is/are analyzed to obtain an optical flow plot indicative of a path on the target surface traversed by the marking device. One or more reference plots respectively representing a plurality of reference marking patterns are compared to one or more portions of the optical flow plot to identify at least one reference marking pattern that substantially matches the portion(s) of the optical flow plot.
摘要:
Systems, methods, and apparatus for performing surface type detection in connection with locate and marking operations. In some embodiments, one or more sensors (e.g., radiation sensors, acoustic sensors, color sensors, light sensors, etc.) may be employed to collect information regarding a surface, such as a ground surface on which marking material is to be dispensed to mark the presence or absence of an underground facility. The collected sensor data may be analyzed to provide an estimate of a type of the surface that is being sensed. For example, a still-image or video camera may be used as a sensor that detects visible light reflecting from a surface. One or more images of the surface captured by the camera may be analyzed using some suitable image analysis software to identify one or more characteristics (e.g., color, intensity, randomness, presence/absence of lines, etc.) that may be indicative of a surface type. As another example, one or more radiation sensors may be employed to measure an amount of electromagnetic radiation reflected by the sensed surface one or more selected wavelengths or ranges of wavelengths to identify a spectral signature that may also be indicative of a surface type.
摘要:
Methods, apparatus, and systems for providing information regarding a locate and/or marking operation to identify a presence or an absence of at least one underground facility within a dig area. At least one notification indicating a status of the locate and/or marking operation is electronically transmitted and/or stored so as to inform at least one party associated with requesting the operation (a “requesting party,” e.g., an excavator, a property owner, a facility owner, a regulatory authority, a damage investigator, etc.) of the status of the operation. In one aspect, a requesting party may designate a preferred format, content, and/or method of receiving notifications regarding the locate and/or marking operation. In another aspect, a computer-generated GUI is provided to facilitate submission of requests, generation of “virtual white line” images to indicate one or more dig areas on a digital image of a work site, and/or selection of notifications and preferences for same. In yet another aspect, a requesting party may provide an acknowledgement of receipt (e.g., a “return receipt”) for one or more received notifications.
摘要:
In connection with a locate operation to detect a presence or absence of an underground facility, a magnetic field from an underground facility is detected, and one or more signals also are obtained that are indicative of one or more environmental conditions in an environment in which the underground facility is detected. The signal(s) indicative of the environmental condition(s) are compared to a target value or range of values to determine if an out-of-tolerance condition exists.
摘要:
Managing information relating to a locate and/or marking operation to detect and/or mark a presence or an absence of at least one underground facility. At least one electronic manifest corresponding to the locate and/or marking operation is generated based on first information relating to the locate and/or marking operation. The at least one electronic manifest includes image information documenting performance of the locate and/or the marking operation. At least one limited access file comprising second information relating to the at least one electronic manifest or the image information is generated, and the at least one limited access file and/or information relating to the at least one limited access file is electronically transmitted and/or stored to facilitate selective/limited access to or viewing of the electronic manifest(s).
摘要:
A docking station to dock locating equipment (e.g., marking devices, locate devices, combined locate and marking devices) may be communicatively coupled to and/or equipped with a mobile/portable device (e.g., a mobile phone, personal digital assistant or other portable computing device) that provides processing, electronic storage, electronic display, user interface, communication facilities and/or other functionality (e.g., GPS-enabled functionality) for the docking station. A mobile/portable device may be mechanically and/or electrically coupled to the docking station. The mobile/portable device may provide redundant, shared and/or backup functionality for the docking station to enhance robustness. In one example, the mobile/portable device itself serves as a docking station for the locating equipment.