摘要:
A method may include receiving a packet including a destination address, identifying a destination address entry based on the destination address, the destination address entry including an address identifier, comparing the address identifier to an event identifier, determining whether an event occurred based on the comparison, and forwarding the packet on an alternate path if it is determined that the event occurred.
摘要:
A method may include receiving a packet including a destination address, identifying a destination address entry based on the destination address, the destination address entry including an address identifier, comparing the address identifier to an event identifier, determining whether an event occurred based on the comparison, and forwarding the packet on an alternate path if it is determined that the event occurred.
摘要:
Methods, apparatus, and products are disclosed for forwarding frames in a computer network using shortest path bridging (‘SPB’). The network includes multiple bridges, and each edge bridge is assigned a unique service virtual local area network (‘VLAN’) identifier. One of the bridges receives a frame for transmission to a destination node. The received frame includes a service VLAN identifier for the ingress bridge through which the frame entered the network and a customer VLAN identifier. The one bridge identifies an SPB forwarding tree in dependence upon the service VLAN identifier. The SPB forwarding tree specifies a shortest route in the network from the ingress bridge through the one bridge to the other bridges in the network. The one bridge then forwards the received frame to the egress bridge without MAC-in-MAC encapsulation in dependence upon the SPB forwarding tree and the customer VLAN identifier.
摘要:
Methods, apparatus, and products are disclosed for forwarding frames in a computer network using shortest path bridging (‘SPB’). The network includes multiple bridges, and each edge bridge is assigned a unique service virtual local area network (‘VLAN’) identifier. One of the bridges receives a frame for transmission to a destination node. The received frame includes a service VLAN identifier for the ingress bridge through which the frame entered the network and a customer VLAN identifier. The one bridge identifies an SPB forwarding tree in dependence upon the service VLAN identifier. The SPB forwarding tree specifies a shortest route in the network from the ingress bridge through the one bridge to the other bridges in the network. The one bridge then forwards the received frame to the egress bridge without MAC-in-MAC encapsulation in dependence upon the SPB forwarding tree and the customer VLAN identifier.
摘要:
Methods, apparatus, and products are disclosed for routing frames in a TRILL network using service VLAN identifiers by: receiving a frame from an ingress bridge node for transmission through the TRILL network to a destination node that connects to the TRILL network through an egress node, the received frame including a customer VLAN identifier, a service VLAN identifier uniquely assigned to the ingress bridge node, and a destination node address for the destination node, the received frame not having mac-in-mac encapsulation; adding, in dependence upon the service VLAN identifier and the destination node address, a TRILL header conforming to the TRILL protocol, the TRILL header including an ingress bridge nickname and an egress bridge nickname; and routing, to the egress bridge node through which the destination node connects to the network, the frame in dependence upon the ingress bridge nickname and the egress bridge nickname.
摘要:
In general, techniques are described for simultaneously testing connectivity to same or different remote maintenance endpoints of the same maintenance association. Specifically, a network device may include a control unit that simultaneously executes both a first and a second maintenance session. The control unit maintains first and second session identifiers that uniquely identifies the first and second maintenance sessions. The control unit receives via the first maintenance session input that specifies parameters for a maintenance message and generates the maintenance message in accordance with the parameters such that the maintenance message includes the first session identifier. The network device also includes an interface card that forwards the maintenance message to another network device in order to determine connectivity between these two network devices. By generating the maintenance message to include the first session identifier, the control unit may upon receiving a response to the maintenance message resolve to which of the maintenance session the response corresponds.
摘要:
Methods, apparatus, and products are disclosed for routing frames in a TRILL network using service VLAN identifiers by: receiving a frame from an ingress bridge node for transmission through the TRILL network to a destination node that connects to the TRILL network through an egress node, the received frame including a customer VLAN identifier, a service VLAN identifier uniquely assigned to the ingress bridge node, and a destination node address for the destination node, the received frame not having mac-in-mac encapsulation; adding, in dependence upon the service VLAN identifier and the destination node address, a TRILL header conforming to the TRILL protocol, the TRILL header including an ingress bridge nickname and an egress bridge nickname; and routing, to the egress bridge node through which the destination node connects to the network, the frame in dependence upon the ingress bridge nickname and the egress bridge nickname.
摘要:
Methods, apparatus, and products for routing frames in a shortest path computer network for a multi-homed legacy bridge, wherein the network includes a plurality of bridges. At least two of the plurality of bridges operate as edge bridges through which the frames ingress and egress the network. A first edge bridge identifies a legacy bridge nickname for a legacy bridge connected to the network through the first edge bridge and a second edge bridge using active-active link aggregation. The first bridge receives a frame from the legacy bridge and determines, in dependence upon the frame's destination node address, an egress bridge nickname for a third bridge through which a destination node connects to the network. The first bridge then adds the legacy bridge nickname and the egress bridge nickname to the frame and routes the frame to the third bridge in dependence upon the egress bridge nickname.
摘要:
Techniques are described for selecting an alternate path for end-to-end service data traffic that traverses multi-homed routers that provide the service to customer networks. For example, as described herein, a router that is a member of a first multi-homing set connected to a layer two (L2) network with one of a plurality of first access links. The router advertises a status of one of the first access links to a second multi-homing set connected to the first multi-homing set with one or more core links. A core link database stores advertised status information for access links of the first and second multi-homing set. Upon a link failure, a path selector selects a core link to transport service data traffic and directs a switch module to switch to active a status a first access links that connects to a router in the first multi-homing set connected to the selected core link.
摘要:
Methods, apparatus, and products for routing frames in a network using bridge identifiers, wherein the network includes a plurality of bridge nodes. At least one of the bridge nodes operates as an ingress bridge node through which frames are received into the network. At least one of the bridge nodes operates as an egress bridge node through which frames are transmitted out of the network. One of the bridge nodes receives, from the ingress bridge node, a frame for transmission to a destination node. The destination node connects to the network through the egress bridge node. The frame includes an ingress bridge identifier and an egress bridge identifier. The bridge that received the frame then routes the frame to the egress bridge node through which the destination node connects to the network in dependence upon the ingress bridge identifier and the egress bridge identifier included in the frame.