摘要:
A plasma display panel prevents error discharge from occurring between adjacent cells to display a clear color image on a screen. The plasma display panel includes a plurality of first sustain electrode lines successively formed on a substrate at a predetermined interval, a plurality of second sustain electrode lines coupled with each of the first sustain electrode lines one by one, a plurality of first discharge electrode pieces branched from each of the first sustain electrode lines, and a plurality of second discharge electrode pieces branched from each of the second sustain electrode lines, having discharge cells coupled with the first discharge electrode pieces.
摘要:
Disclosed is a method for removing a thermal sleeve from a cold leg of a reactor coolant system, which enables removal of an unintentionally separated thermal sleeve without implementation of a pipe cutting operation, preventing invasion of impurities into pipes and securing reliability in repetitious welding of the pipes. In particular, the method enables a remote operation and an underwater operation using wire ropes, thus being capable of minimizing a negative effect on workers due to radiation exposure.
摘要:
Disclosed is an apparatus for removing a thermal sleeve from a cold leg of a reactor coolant system, which removes an unintentionally separated thermal sleeve without pipe cutting, preventing invasion of impurities into pipes and achieving reliable pipe re-welding. The apparatus includes a sleeve removal tool including a corn head formed at a shaft, a pressure plate below the corn head to maximize hydraulic pressure inside a safety injection pipe, a spring connected to the pressure plate to keep the pressure plate unfolded, and a guide wheel to guide the sleeve removal tool into the safety injection pipe, a horizontal movement carrier including bodies connected to each other by a link, a seating rod for seating of the sleeve removal tool, and moving wheels for movement of the horizontal movement carrier, and a vertical movement carrier including first and second anti-separation bars to prevent separation of the horizontal movement carrier.
摘要:
Technologies related to forming metal lines of a semiconductor device are disclosed. A method of forming metal lines of a semiconductor device may include forming at least one interlayer insulating layer on a semiconductor substrate, forming via holes and trenches in the at least one interlayer insulating layer, forming an anti-diffusion film on the via holes and the trenches, depositing a seed Cu layer on the anti-diffusion film, after the seed Cu layer is deposited, depositing rhodium (Rh), and forming Cu line on the deposited Rh. The Rh improves an adhesive force between Cu layers and prevents oxide materials or a corrosion phenomenon from occurring on the seed Cu layer. Accordingly, occurrence of delamination in subsequent processes (for example, annealing and CMP) can be prevented or reduced.
摘要:
There are provided a steel for deep drawing, and a method for manufacturing the steel and a high pressure container. The steel for deep drawing includes, by weight: C: 0.25 to 0.40%, Si: 0.15 to 0.40%, Mn: 0.4 to 1.0%, Al: 0.001 to 0.05%, Cr: 0.8 to 1.2%, Mo: 0.15 to 0.8%, Ni: 1.0% or less, P: 0.015% or less, S: 0.015% or less, Ca: 0.0005 to 0.002%, Ti: 0.005 to 0.025%, B: 0.0005 to 0.0020% and the balance of Fe and inevitable impurities, wherein a microstructure of the steel has a triphase structure of ferrite, bainite and martensite. The steel for deep drawing may be useful to further improve the strength without the deterioration of the toughness by adding a trace of Ti and B, compared to the conventional steels having a strength of approximately 1100 MPa. Also, the a method for manufacturing a steel may be useful to save the manufacturing cost and time by significantly curtailing time used in the spheroidization heat treatment during the deep drawing process, and to manufacture a steel for deep drawing that is used for a low-temperature, high-pressure container having a tensile strength of approximately 1200 Mpa by reducing a depth of the softening layer to prevent the deterioration in strength of the steel.
摘要:
There are provided a steel for deep drawing, and a method for manufacturing the steel and a high pressure container. The steel for deep drawing includes, by weight: C: 0.25 to 0.40%, Si: 0.15 to 0.40%, Mn: 0.4 to 1.0%, Al: 0.001 to 0.05%, Cr: 0.8 to 1.2%, Mo: 0.15 to 0.8%, Ni: 1.0% or less, P: 0.015% or less, S: 0.015% or less, Ca: 0.0005 to 0.002%, Ti: 0.005 to 0.025%, B: 0.0005 to 0.0020% and the balance of Fe and inevitable impurities, wherein a microstructure of the steel has a triphase structure of ferrite, bainite and martensite. The steel for deep drawing may be useful to further improve the strength without the deterioration of the toughness by adding a trace of Ti and B, compared to the conventional steels having a strength of approximately 1100 MPa. Also, the a method for manufacturing a steel may be useful to save the manufacturing cost and time by significantly curtailing time used in the spheroidization heat treatment during the deep drawing process, and to manufacture a steel for deep drawing that is used for a low-temperature, high-pressure container having a tensile strength of approximately 1200 Mpa by reducing a depth of the softening layer to prevent the deterioration in strength of the steel.