Loading effect reduction through multiple coat-etch processes

    公开(公告)号:US11387105B2

    公开(公告)日:2022-07-12

    申请号:US17001382

    申请日:2020-08-24

    摘要: First, second, and third trenches are formed in a layer over a substrate. The third trench is substantially wider than the first and second trenches. The first, second, and third trenches are partially filled with a first conductive material. A first anti-reflective material is coated over the first, second, and third trenches. The first anti-reflective material has a first surface topography variation. A first etch-back process is performed to partially remove the first anti-reflective material. Thereafter, a second anti-reflective material is coated over the first anti-reflective material. The second anti-reflective material has a second surface topography variation that is smaller than the first surface topography variation. A second etch-back process is performed to at least partially remove the second anti-reflective material in the first and second trenches. Thereafter, the first conductive material is partially removed in the first and second trenches.

    Semiconductor device and manufacturing method thereof

    公开(公告)号:US11316033B2

    公开(公告)日:2022-04-26

    申请号:US16900748

    申请日:2020-06-12

    摘要: A method includes forming a work function metal layer over first and second semiconductor fins extending upward from a substrate; forming a sacrificial layer straddling the first semiconductor fin but not overlapping the second semiconductor fin; patterning the first work function metal layer using the sacrificial layer, resulting in a patterned work function metal layer under the sacrificial layer, and a work function metal residue in the vicinity of the second semiconductor fin; selectively forming a protective layer on a side surface of the sacrificial layer and a side surface of the patterned first work function metal layer; removing the work function metal residue after selectively forming the protective layer; after removing the work function metal residue, removing the sacrificial layer and the protective layer; and forming a second work function metal layer over the first and second semiconductor fins.

    LOADING EFFECT REDUCTION THROUGH MULTIPLE COAT-ETCH PROCESSES

    公开(公告)号:US20190252193A1

    公开(公告)日:2019-08-15

    申请号:US16396429

    申请日:2019-04-26

    摘要: First, second, and third trenches are formed in a layer over a substrate. The third trench is substantially wider than the first and second trenches. The first, second, and third trenches are partially filled with a first conductive material. A first anti-reflective material is coated over the first, second, and third trenches. The first anti-reflective material has a first surface topography variation. A first etch-back process is performed to partially remove the first anti-reflective material. Thereafter, a second anti-reflective material is coated over the first anti-reflective material. The second anti-reflective material has a second surface topography variation that is smaller than the first surface topography variation. A second etch-back process is performed to at least partially remove the second anti-reflective material in the first and second trenches. Thereafter, the first conductive material is partially removed in the first and second trenches.

    Loading effect reduction through multiple coat-etch processes

    公开(公告)号:US10276392B2

    公开(公告)日:2019-04-30

    申请号:US15642559

    申请日:2017-07-06

    摘要: First, second, and third trenches are formed in a layer over a substrate. The third trench is substantially wider than the first and second trenches. The first, second, and third trenches are partially filled with a first conductive material. A first anti-reflective material is coated over the first, second, and third trenches. The first anti-reflective material has a first surface topography variation. A first etch-back process is performed to partially remove the first anti-reflective material. Thereafter, a second anti-reflective material is coated over the first anti-reflective material. The second anti-reflective material has a second surface topography variation that is smaller than the first surface topography variation. A second etch-back process is performed to at least partially remove the second anti-reflective material in the first and second trenches. Thereafter, the first conductive material is partially removed in the first and second trenches.

    Loading effect reduction through multiple coat-etch processes

    公开(公告)号:US10755936B2

    公开(公告)日:2020-08-25

    申请号:US16396429

    申请日:2019-04-26

    摘要: First, second, and third trenches are formed in a layer over a substrate. The third trench is substantially wider than the first and second trenches. The first, second, and third trenches are partially filled with a first conductive material. A first anti-reflective material is coated over the first, second, and third trenches. The first anti-reflective material has a first surface topography variation. A first etch-back process is performed to partially remove the first anti-reflective material. Thereafter, a second anti-reflective material is coated over the first anti-reflective material. The second anti-reflective material has a second surface topography variation that is smaller than the first surface topography variation. A second etch-back process is performed to at least partially remove the second anti-reflective material in the first and second trenches. Thereafter, the first conductive material is partially removed in the first and second trenches.