Abstract:
A magnetic recording head is provided with a main magnetic pole that generates a recording magnetic field to be applied to a magnetic recording medium from an end surface which makes a portion of an air bearing surface, a trailing shield that is placed by interposing a write gap at a trailing side of the main magnetic pole, a spin torque oscillator that is placed within the write gap to be between the main magnetic pole and the trailing shield, and two side shields that are placed at both sides of the main magnetic pole in the cross track direction, and when viewed from the air bearing surface side, at least a portion of the trailing-side end surfaces of the side shields are offset toward a leading-side of the main magnetic pole from the leading-side end surface of the spin torque oscillator.
Abstract:
A domain wall moving type magnetic recording element includes: a domain wall moving layer in which first layers containing a rare earth metal and second layers containing a transition metal are alternately stacked in a first direction; and a first electrode and a second electrode which face the domain wall moving layer and are arranged to be away from each other. The domain wall moving layer has SOT suppression parts which are positioned in one of interfaces between the first layers and the second layers and contain a non-magnetic metal. The SOT suppression parts are locally distributed at the interface.
Abstract:
A magnetic head includes a main magnetic pole used to apply a recording signal magnetic field to a magnetic recording medium and also includes a microwave line through which a microwave alternating current is transferred. The microwave line is connected to the main magnetic pole. The entire end surface of the main magnetic pole is positioned closer to air bearing surface than a connection portion at which the microwave line and main magnetic pole are mutually connected. Therefore, microwave assisted magnetic recording is possible without deteriorating the recording signal magnetic field.
Abstract:
A magnetic recording and reproducing apparatus includes a magnetic recording medium including a recording layer in which at least two magnetic layers are layered on a non-magnetic substrate; and a magnetic head including a main magnetic pole for applying a recording magnetic field in a direction substantially perpendicular to a recording face of the magnetic recording medium and a microwave generating element that generates a microwave magnetic field. The relationship between a thickness Ts of a magnetic layer having a lowest magnetic anisotropy energy among the at least two magnetic layers composing the recording layer of the magnetic recording medium, and a thickness Tt of the recording layer is Ts/Tt≦0.2. The microwave generating element applies the microwave magnetic field having a width broader than the width of the recording magnetic field generated by the main magnetic pole of the magnetic head to the magnetic recording medium.
Abstract:
A microwave assisted magnetic head is equipped with a main magnetic pole that generates a recording magnetic field to be applied to a magnetic recording medium from an end surface forming a portion of an air bearing surface opposed to the magnetic recording medium, a trailing shield that is disposed interposing a write gap at a trailing side of the main magnetic pole, and that forms a magnetic path with the main magnetic pole, two side shields that are disposed at both sides of the main magnetic pole in the cross track direction, respectively, and a spin torque oscillator that is disposed within the write gap. The write gap is configured to substantially linearly extend along the cross track direction when viewed from an air bearing surface side, and is positioned between trailing-side end surfaces of the main magnetic pole and the two side shields, and a leading-side end surface of the trailing shield.
Abstract:
A domain wall type magnetic recording element includes a first ferromagnetic layer containing a ferromagnetic material, a magnetic recording layer extending in a first direction which intersects a lamination direction of the first ferromagnetic layer and containing a magnetic domain wall, and a nonmagnetic layer sandwiched between the first ferromagnetic layer and the magnetic recording layer, in which the magnetic recording layer includes a recessed part or a protruding part, which is configured to trap the magnetic domain wall, on a side surface, and a width of the first ferromagnetic layer is smaller than a smallest width of the magnetic recording layer in a second direction perpendicular to the first direction in a plan view from the lamination direction.
Abstract:
A magnetic recording head comprises: a main magnetic pole for generating a recording magnetic field applied to a magnetic recording medium from an end surface that is one part of an air bearing surface facing the magnetic recording medium; a trailing shield that is placed by interposing a write gap at a trailing side of the main magnetic pole; and a spin torque oscillator provided in the write gap; wherein, when viewed from the air bearing surface side, the length in the down-track direction between the trailing shield and the cross-track direction end portion of a first end face positioned at the main magnetic pole side of the spin torque oscillator is longer than the length in the down-track direction between the trailing shield and the main magnetic pole at a center position in the cross-track direction of the spin torque oscillator.