Abstract:
A magnetically shielded room reducing pressure felt by a person inside includes an upper shielding body, a side periphery shielding body, and a lower shielding body, all of which define a magnetically shielded inner space. A magnifying lens is located in the upper shielding body. The magnifying lens can magnify and project an incident image from outside to a range of one inner side surface of the magnetically shielded room. so that the range should be 50% or more of the area of the one inner side surface. The range includes most of the area above a line of sight of a person in the magnetically shielded room. The magnifying lens is provided at a position closer to the one inner side surface as a projection target of the lens than the other inner side surface as a non-projection target facing the one inner side surface as the projection target.
Abstract:
There is provided a high-frequency amplifier including a divider, a plurality of amplifiers for amplifying a high-frequency signal distributed by the divider and outputting the amplified high-frequency signal, a combiner for combining amplified high-frequency signals, a base substrate, a conductor pattern that is connected to a ground end of each of the amplifiers, and a ground electrode. Each of the conductor patterns has a first conductive portion. A slot is disposed between the two conductor patterns connected to the corresponding adjacent amplifiers. Between the adjacent amplifiers, two vias are formed so that the slot is sandwiched between the vias. One of the two conductor patterns is connected to the ground electrode via one of the two vias, and the other one of the conductor patterns is connected to the ground electrode via the other one of the two vias.
Abstract:
Disclosed herein is a magnetic sensor that includes: a magnetosensitive element; a cancellation coil cancelling a component on the magnetosensitive element of an AC excitation magnetic field applied to a measurement target including a magnetic material; a receiving coil receiving a primary magnetic field generated from the magnetic material; and a transmitting coil connected to the receiving coil and applying a secondary magnetic field to the magnetosensitive element based on a detection current supplied from the receiving coil.
Abstract:
Since a high-frequency signal that is output from a high-frequency oscillator circuit section is detected in a detector circuit and a bias of a negative voltage is supplied from a bias circuit section to the high-frequency amplifier circuit section with a detection voltage that is detected, a negative power supply circuit such as a DC/DC converter or a peripheral circuit is not required, and since a negative bias voltage can be supplied to a high-frequency amplifier circuit, downsizing can be achieved with a low cost.
Abstract:
A magnetic sensor array includes a plurality of magnetic sensors. The magnetic sensor includes a sensor housing body housing the sensor chip and first and second connection parts formed on the sensor housing body. The first connection part formed on one of adjacent magnetic sensors and the second connection part formed on the other one thereof are axially supported on each other to achieve mutual connection between the plurality of magnetic sensors. Thus, it is possible to vary the relative angle between two adjacent magnetic sensors with the first and second connection parts as an axis. This allows the plurality of magnetic sensors to be pressed perpendicularly against even a curved surface of an object to be measured, and the pressed state can be easily maintained.
Abstract:
A magnetic head has a magnetic head slider that includes a recording element that generates a recording signal magnetic field, a microwave magnetic field generating element that generates a microwave magnetic field, a terminal electrode, and a first transmission line that interconnects the terminal electrode and the microwave magnetic field generating element. A second transmission line is connected to the terminal electrode, the second transmission line being used to transmit a microwave signal from the outside of the magnetic head slider to the magnetic head slider. A capacitor connected to the first transmission line is provided between the terminal electrode and the microwave magnetic field generating element. Accordingly, in the magnetic head, a microwave signal is efficiently propagated.
Abstract:
A high-frequency amplifier circuit includes a balanced-unbalanced converter converting a single-ended signal into differential signals. The output of a first amplifier amplifying the single-ended signal is connected to the signal terminal on the unbalanced side of the balanced-unbalanced converter. The input of a second amplifier amplifying one of the differential signals is connected to one signal terminal on the balanced side of the balanced-unbalanced converter. The input of a third amplifier amplifying another of the differential signals is connected to another signal terminal on the balanced side of the balanced-unbalanced converter. An impedance element is inserted between an element on the balanced side of the balanced-unbalanced converter and a ground.
Abstract:
Disclosed herein is a position detection marker that includes a magnetic field source that generates magnetism, an MRI marker that can be detected by a magnetic resonance imaging method, and a holding part that fixes a relative positional relation between the magnetic field source and the MRI marker.
Abstract:
A magnetic field calibration device is used to calibrate a magnetism measurement device having a plurality of magnetic sensors and includes a first holder having a first holding surface, a second holder having a second holding surface having a fixed relative positional relation with the first holding surface, and magnetism generating parts fixed to the first holding surface and the second holding surface. Thus, calibration can be completed with a single operation by assigning the first and second holding surfaces of the magnetic field calibration device respectively to the first and second measurement surfaces of the magnetism measurement device. In addition, since the relative positional relation between the first and second holding surfaces is fixed, measurement results obtained from the individual measurement surfaces match each other.
Abstract:
A magnetically shielded room includes an upper shielding body, a side peripheral shielding body and a lower shielding body, all of which define a magnetically shielded inner space. The magnetically shielded inner space is divided into first and second inner spaces by a partition member which is a magnetic shielding body. A door, which is a magnetic shielding body, is provided for commonly closing the first and second inner spaces.