Abstract:
The invention relates to a multi-layer composite for the production of membranes for electroacoustic transducers, comprising a first and second cover layer, a first and second damping layer and a separating layer, the first and the second damping layer consisting of adhesive compositions the respective glass transition temperatures TG (DSC) of which differ by at least 10 K.
Abstract:
A multi-layered laminate for producing membranes for electroacoustic transducers, comprises a first layer of a polyether ether ketone film having a heat of crystallisation of at least 15 J/g, a second layer (of a thermoplastic plastic film having a heat of crystallisation of no more than 5 J/g, and an adhesive layer arranged between the first and second layers. Alternatively, the first and second layers are defined by their shrinkage properties after 15 minutes at 200° C.: the first layer has shrinkage of more than 10% in at least one direction, and the second layer has shrinkage of less than 10% in the longitudinal and transverse directions. A laminate constructed in this manner exhibits lower fold formation when processed using multi-cavity thermoforming. The laminates are useful for the production of membranes for electroacoustic transducers.
Abstract:
Multi-layer composites and methods of using the composites as a membrane for electroacoustic transducers. The composites and methods comprise at least one first and one second outer layer, wherein at least one of the cover layers being made from a polypropylene sulfide-plastic having a halogen content not exceeding 550 ppm.
Abstract:
The invention relates to an adhesive strip redetachable without residue or destruction by extensive stretching substantially in the bond plane, comprising at least one layer of adhesive which is foamed with microballoons, and at least one carrier B.
Abstract:
A reactive pressure-sensitive adhesive element that includes: i) a carrier layer; ii) a first adhesive layer arranged on a first surface of the carrier layer that comprises a first UV-curable pressure-sensitive adhesive; and iii) a second adhesive layer arranged on a second surface of the carrier layer facing away from the first surface, wherein the second adhesive layer comprises a second UV-curable pressure-sensitive adhesive. Each of the first and second UV-curable pressure-sensitive adhesives, based on a mass of the respective pressure-sensitive adhesive, comprises: x) one or more poly (meth) acrylate compounds in a combined mass fraction from 35% to 85%; y) one or more polymerizable epoxy compounds in a combined mass fraction from 10% to 50%; and z) one or more photoinitiators in a combined mass fraction from 0.1% to 5%. Further, the carrier layer comprises a foam carrier, the foam carrier comprising one or more polyolefins.
Abstract:
The invention relates to a composite for production of an acoustic membrane, wherein the composite comprises an internal carrier layer and at least two adhesive layers on the two surfaces of the carier layer, and wherein the carrier layer is a layer of a polyaryl ether ketone film; and also to a corresponding membrane for acoustic transducers.
Abstract:
A multi-layered laminate for producing membranes for electroacoustic transducers, comprises a first layer of a polyether ether ketone film having a heat of crystallisation of at least 15 J/g, a second layer (of a thermoplastic plastic film having a heat of crystallisation of no more than 5 J/g, and an adhesive layer arranged between the first and second layers. Alternatively, the first and second layers are defined by their shrinkage properties after 15 minutes at 200° C.: the first layer has shrinkage of more than 10% in at least one direction, and the second layer has shrinkage of less than 10% in the longitudinal and transverse directions. A laminate constructed in this manner exhibits lower fold formation when processed using multi-cavity thermoforming. The laminates are useful for the production of membranes for electroacoustic transducers.
Abstract:
The invention relates to a multi-layer composite for the production of membranes for electroacoustic transducers, comprising a first and second cover layer, a first and second damping layer and a separating layer, the first and the second damping layer consisting of adhesive compositions the respective glass transition temperatures TG (DSC) of which differ by at least 10 K.