Abstract:
In some examples, a system comprises a capacitor including a first plate, a second plate, and a ferroelectric material disposed between the first and the second plates and comprising a Bismuth Metal Oxide-Based Lead Titanate thin film. The capacitor further comprises a dielectric layer disposed on a transistor, wherein the capacitor is disposed on the dielectric layer.
Abstract:
Non-volatile latch circuits, such as in memory cells and flip-flops, that are constructed for reliability screening. The non-volatile latch circuits each include ferroelectric capacitors coupled to storage nodes, for example at the outputs of cross-coupled inverters. Separate plate lines are connected to the ferroelectric capacitors of the complementary storage nodes. A time-zero test of the latch stability margin is performed by setting a logic state at the storage nodes, then programming the state into the ferroelectric capacitors by polarization. After power-down, the plate lines are biased with a differential voltage relative to one another, and the latch is then powered up to attempt recall of the programmed state. The differential voltage disturbs the recall, and provides a measure of the cell margin and its later-life reliability.
Abstract:
A system on chip (SoC) may include a nonvolatile ferroelectric random access memory (FRAM). A random number may be created by applying operating power to the ferroelectric random access memory (FRAM) device and reading a sequence of virgin memory locations within the FRAM device to produce the random number sequence. The sequence of virgin memory locations had previously never been written. The random number may be produced during an initial boot of the SoC, for example. Alternatively, the random number may be saved by a test station during testing of the FRAM device after fabrication of the FRAM device. A memory test of the FRAM may then be performed, after which the random number may be stored in a defined location in the FRAM.
Abstract:
A system on chip (SoC) may include a nonvolatile ferroelectric random access memory (FRAM). A random number may be created by applying operating power to the ferroelectric random access memory (FRAM) device and reading a sequence of virgin memory locations within the FRAM device to produce the random number sequence. The sequence of virgin memory locations had previously never been written. The random number may be produced during an initial boot of the SoC, for example. Alternatively, the random number may be saved by a test station during testing of the FRAM device after fabrication of the FRAM device. A memory test of the FRAM may then be performed, after which the random number may be stored in a defined location in the FRAM.
Abstract:
A method of generating a random number from an electronic circuit memory and/or a system with the electronic circuit memory. The memory comprises a block of ferroelectric two transistor, two capacitor (2T-2C), memory cells. The method comprises: (i) first, writing a predetermined programming pattern to the block cells in a one transistor, one-capacitor (1T-1C) mode, thusly writing, per cell, a same data state to both a first and second sub-cell of the cell; (ii) second, reading the cells in a 2T-2C mode to generate a random number comprising a random bit from each of the cells; (iii) third, restoring the random number into the cells in a 2T-2C mode, thusly writing, per cell, a complementary data state to both a first and second sub-cell of the cell, responsive to a respective random number bit; and fourth, imprinting the random number in each cell in the block.
Abstract:
In some examples, a system comprises a capacitor including a first plate, a second plate, and a ferroelectric material disposed between the first and the second plates and comprising a Bismuth Metal Oxide-Based Lead Titanate thin film. The capacitor further comprises a dielectric layer disposed on a transistor, wherein the capacitor is disposed on the dielectric layer.
Abstract:
A fuse-programmable register or memory location having a plurality of fusible links of differing electrical characteristics in parallel. In one embodiment, three fusible links with different resistances are provided, such that application of a programming voltage non-uniformly distributes the current among the links, allowing varying voltages to selectively blow one or more of the links. Sensing of the programmed state is performed by applying a voltage across the parallel links and measuring the current in comparison with a plurality of reference currents. Reduction in the overhead chip area per bit and in the serial data communication latency are obtained.
Abstract:
A fuse-programmable register or memory location having a plurality of fusible links of differing electrical characteristics in parallel. In one embodiment, three fusible links with different resistances are provided, such that application of a programming voltage non-uniformly distributes the current among the links, allowing varying voltages to selectively blow one or more of the links. Sensing of the programmed state is performed by applying a voltage across the parallel links and measuring the current in comparison with a plurality of reference currents. Reduction in the overhead chip area per bit and in the serial data communication latency are obtained.
Abstract:
A fuse-programmable register or memory location having a plurality of fusible links of differing electrical characteristics in parallel. In one embodiment, three fusible links with different resistances are provided, such that application of a programming voltage non-uniformly distributes the current among the links, allowing varying voltages to selectively blow one or more of the links. Sensing of the programmed state is performed by applying a voltage across the parallel links and measuring the current in comparison with a plurality of reference currents. Reduction in the overhead chip area per bit and in the serial data communication latency are obtained.
Abstract:
Non-volatile latch circuits, such as in memory cells and flip-flops, that are constructed for reliability screening. The non-volatile latch circuits each include ferroelectric capacitors coupled to storage nodes, for example at the outputs of cross-coupled inverters. Separate plate lines are connected to the ferroelectric capacitors of the complementary storage nodes. A time-zero test of the latch stability margin is performed by setting a logic state at the storage nodes, then programming the state into the ferroelectric capacitors by polarization. After power-down, the plate lines are biased with a differential voltage relative to one another, and the latch is then powered up to attempt recall of the programmed state. The differential voltage disturbs the recall, and provides a measure of the cell margin and its later-life reliability.