Abstract:
An optical distance measurement system includes a transmission circuit and a receive circuit. The transmission circuit is configured to generate narrowband intensity modulated light transmission signals over a first band of frequencies and direct the narrowband light transmission signal toward a target object. The receive circuit is configured to receive reflected light off the target object, convert the reflected light into a current signal proportional to the intensity of the reflected light, filter frequencies outside a second band of frequencies from the current signal to create a filtered current signal, and convert the filtered current signal into a voltage signal. The second band of frequencies corresponds with the first band of frequencies.
Abstract:
Methods and apparatus to determine an accurate distance to a target using reference signal interpolation is disclosed. An example apparatus includes an interpolator to receive a first sample of a reference signal and a second sample of a reference signal; and interpolating a reconstructed reference signal sample based on the first and second samples, the reconstructed reference signal corresponding to the reference signal; a correlator to generate a plurality of phase-shifted, reconstructed reference signals; and correlate each of the plurality of phase-shifted, reconstructed reference signals with a reflected signal; and an optimal phase selector to determine an optimal phase based on the correlations and output a distance to a target based on the optimal phase.
Abstract:
A tunable quadrature oscillator includes a first oscillator having an output, a second oscillator having an output, and a variable gain amplifier. The variable gain amplifier includes an input coupled to the output of the second oscillator, and an output inductively coupled to the output of the first oscillator.
Abstract:
A method is provided. An initial bit sequence is received by a receiver. A local oscillator is locked initially to a local reference and subsequently to the received signal using the initial bit sequence, and automatic gain control (AGC) is performed once the local oscillator is locked to the local reference. A Costas loop is then activated so as to achieve carrier frequency offset (CFO) lock, and sign inversion is detected. The receiver then synchronized with an end-of-training pattern.
Abstract:
An apparatus is provided. Transmission line cells are formed in a first region. A first metallization layer is formed over the transmission line cells within a portion of the first region. At least a portion of the first metallization layer is electrically coupled to the plurality of transmission line cells. A second metallization layer is formed over the first metallization layer with an interconnect portion, and overlay portion, and a first balun. The interconnect portion at least partially extends into the first region, and the overlay portion is within the first region. The first balun winding is electrically coupled to the overlay portion and partially extends into a second region. The first region partially surrounds the second region. A third metallization layer is formed over the second metallization layer having a second balun winding within the second region, where the second winding is generally coaxial with the first balun winding.
Abstract:
Described examples include an integrated circuit having an analog-to-digital converter operable to receive an input signal derived from a light signal and convert the input signal to a digital received signal, the analog-to-digital converter operable to receive the input signal during at least one window. The integrated circuit further has a receiver operable to receive the digital received signal, the receiver operable to determine a distance estimate of an object from which the light signal is reflected based on the digital received signal. In an example, the window locations are chosen to correspond to the locations of maximum slope in the signal.
Abstract:
Methods and apparatus to determine a distance to a target using coarse and fine delay estimation based on a narrowband transmit signal are disclosed. An example apparatus includes a transducer to receive a reference signal and a reflected signal, the reflected signal being the reference signal after being reflected of a target; a filter to generate a band-pass reference signal and a band-pass reflected signal by filtering (A) reference signal samples associated with the reference signal and (B) reflected signal samples associated with the reflected signal; a correlator to generate a first correlation by correlating the reference signal samples with the reflected signal samples and a second correlation by correlating the band-pass reference signal with the band-pass reflected signal; and a delay estimator to determine a distance to the target based on the first correlation (coarse delay) and the second correlation (fine delay) and output a signal including the distance to the target.
Abstract:
Methods and apparatus to determine an accurate distance to a target using reference signal interpolation is disclosed. An example apparatus includes an interpolator to receive a first sample of a reference signal and a second sample of a reference signal; and interpolating a reconstructed reference signal sample based on the first and second samples, the reconstructed reference signal corresponding to the reference signal; a correlator to generate a plurality of phase-shifted, reconstructed reference signals; and correlate each of the plurality of phase-shifted, reconstructed reference signals with a reflected signal; and an optimal phase selector to determine an optimal phase based on the correlations and output a distance to a target based on the optimal phase.
Abstract:
In described examples, a spatial light modulator (SLM) receives light from a field of view. The SLM includes a two-dimensional array of picture elements in rows and columns. In response to a transmit scan beam that illuminates the field of view, a portion of the two-dimensional array is impacted by light reflected from a region of interest. The portion of the two-dimensional array is determined. Light is directed from the portion of the two-dimensional array to a photodiode. Light that impacts the two-dimensional array outside the portion is directed away from the photodiode.
Abstract:
In described examples, an integrated circuit includes a modulator configured to modulate a driving signal for an optical transmitter with a narrow band modulation signal in which the driving signal with a fixed duration is transmitted to the optical transmitter periodically. The integrated circuit also includes a demodulator configured to receive a signal from an optical receiver that is configured to receive a reflection of light transmitted by the optical transmitter off an object, the demodulator configured to discriminate the narrow band modulation signal and estimate a distance of the object using the narrow band modulation signal.