Abstract:
An IQ estimation module comprising a powerup state IQ estimator configured to generate powerup state IQ estimates based on a powerup calibration of the IQ estimation module, a steady state IQ estimator configured to generate steady state IQ estimates during a steady state operation of the IQ estimation module, and an IQ estimate extender configured to determine differences between the powerup state IQ estimates and steady state IQ estimates at their respective frequency bins and adjust the powerup state IQ estimates to improve the accuracy of IQ estimates.
Abstract:
A system. The system includes a first tracking filter configured to track a frequency domain mismatch profile between component analog-to-digital convertors (ADCs) of an interleaved ADC (IADC), and a second tracking filter configured to a track a frequency independent timing delay mismatch and a timing delay mismatch correction error based on frequency domain mismatch profile estimates. An output of the first tracking filter determines a correction of a frequency dependent mismatch profile in an output of the interleaved ADC and an output of the second tracking filter determines a correction of the timing delay mismatch correction error in the output of the interleaved ADC.
Abstract:
Aspects of the description provide for an analog-to-digital converter (ADC) operable to convert an analog input signal to an output signal at an output of the ADC. In some examples, the ADC includes multiple sub-ADCs coupled in parallel, each of the multiple sub-ADCs coupled to the output of the ADC and operable to receive the analog input signal. The ADC is configured to operate the sub-ADCs in a consecutive operation loop including a transition phase in which the ADC operates each of the sub-ADCs sequentially for a first number of sequences, an estimation phase in which the ADC operates each of the sub-ADCs sequentially for a second number of sequences following the first number of sequences, and a randomization phase in which the ADC operates subsets of the sub-ADCs for a third number of sequences following the second number of sequences.
Abstract:
An electrical system includes a transceiver with an IQ estimator and an IQ mismatch corrector. The electrical system also includes an antenna coupled to the transceiver. The IQ estimator is configured to perform frequency-domain IQ mismatch analysis to determine an IQ mismatch estimate at available frequency bins of a baseband data signal. The IQ mismatch corrector is configured to correct the baseband data signal based on the IQ mismatch estimate.
Abstract:
An integrated circuit chip includes an interleaved analog-to-digital converter (ADC) and an interleaving calibration circuit. The interleaved ADC includes a plurality of ADCs that are each configured to sample an analog signal. The interleaved ADC is configured to convert the analog signal into an interleaved analog-to-digital signal (IADC signal) that includes a plurality of spurious signals formed from mismatches between the plurality of ADCs. The interleaving calibration circuit is configured to receive the IADC signal from the interleaved ADC, generate a mismatch profile estimate corresponding to the plurality of spurious signals to generate one or more mismatch profile estimates, determine whether a first mismatch profile estimate is in a frequency band of interest, and, in response to a determination that the first mismatch profile estimate is in the frequency band of interest, generate a set of model parameters based on the first mismatch profile estimate.
Abstract:
A spur correction system for a transmit chain having an interleaving multiplexer. In some embodiments, the spur correction system includes a spur sense chain, a correction controller, and a Q path corrector. The interleaving multiplexer combines signals from multiple bands in response to a clock signal. The spur sense chain estimates an error that is in phase with the clock signal (an I-phase error) and an error that is a derivative of the clock signal (a Q-phase error). The correction controller compensates for the estimated I-phase error by injecting an I-phase correction signal into the transmit chain. The Q path corrector compensates for the estimated Q-phase error by selectively connecting one or more capacitors within the interleaving multiplexer.
Abstract:
A channel estimation method and system for IQ imbalance and local oscillator leakage correction, wherein an example of a channel estimation system comprising a calibrating signal generator configured to generate at least one pair of calibrating signals, a feedback IQ mismatch estimator configured to measure feedback IQ mismatch estimates based on the pair of calibrating signals, and a calibrating signal based channel estimator configured to generate a channel estimate based on the pair of calibrating signals and the feedback IQ mismatch estimates.
Abstract:
An IQ mismatch correction function generator configured to generate an enhanced IQ mismatch correction function to improve the compensation for IQ mismatch, and an IQ signal receiver with the IQ mismatch correction function generator, wherein the enhanced IQ mismatch correction function is determined based on an initial IQ mismatch correction function derived from IQ mismatch estimates corresponding to frequency bins where signals are present and error of the initial IQ mismatch correction function by comparing the values of the initial IQ mismatch correction function with IQ mismatch estimates corresponding to a respective bin of the frequency bins.