Abstract:
This aeronautical equipment for an aircraft, comprising a part configured to be positioned at the level of a skin of the aircraft and means for reheating this part comprising a closed-circuit thermodynamic loop in which a phase-change heat transfer fluid circulates, is wherein it includes means for monitoring the fluid pressure in the loop in order to detect and report a malfunction of the equipment.
Abstract:
The present invention relates to an electronic system comprising an electronic system comprising an electromechanical microsystem and a hermetic box encapsulating said microsystem. The box includes a fastening plane. The electromechanical microsystem includes a sensitive part and at least two beams connecting the sensitive part to the fastening plane.The beams are thermally coupled to the sensitive part and are electrically coupled to one another. The system further includes a thermal regulator of the electromechanical microsystem including an electrical circuit including at least two ends connected to the beams, and a circuit controller able to generate an electrical current in the electrical circuit to modify the temperature of the sensitive part.
Abstract:
A piece of aeronautic equipment intended to equip an aircraft, the equipment piece (25) including at least one part intended to be arranged at a skin (27) outside of the aircraft and heating elements for that part, which include a thermodynamic loop including a closed circuit in which a heat transfer fluid circulates, the closed circuit including an evaporator and a zone in which condensation of the heat transfer fluid can occur in the appendage to heat it, outside the evaporator, the circuit in which the fluid circulates is formed by a tubular channel with an empty section, at least the part of the piece of equipment arranged outside the aircraft is made by additive manufacturing and includes a fastening base (120) for fastening on the skin of the aircraft from which support elements (130) for a Pitot tube (140) provided with lateral static pressure taps (150) extend.
Abstract:
An aircraft provided with at least one piece of aeronautic equipment, the equipment (25) including a part intended to be arranged at a skin (27) of the aircraft and elements for heating the part, characterized in that the heating elements include a thermodynamic loop including a closed circuit in which a heat transfer fluid circulates, the closed circuit including an evaporator (14) associated with functional elements (70) of the aircraft forming a heat source giving off heat during their operation and a zone in which a condensation of the heat transfer fluid can occur in the appendage to heat it, and in that outside the evaporator, the circuit in which the fluid circulates is formed by a tubular channel with an empty section.
Abstract:
An aircraft provided with at least two pieces of aeronautic equipment, a first piece of equipment (25) including a part intended to be arranged at a skin (27) of the aircraft and elements for heating the part, characterized in that the heating elements include a thermodynamic loop including a closed circuit in which a heat transfer fluid circulates, the closed circuit including an evaporator (14) associated with functional elements (80) of the second piece of equipment (81) of the aircraft forming a heat source giving off heat during their operation and a zone in which a condensation of the heat transfer fluid can occur in the appendage to heat it, and in that outside the evaporator (14), the circuit in which the fluid circulates is formed by a tubular channel with an empty section.
Abstract:
A rack for an aeronautical platform comprising two parallel shelves positioned between a front face and a rear face of the platform, the rack being inserted into the platform by translation from the front face to the rear face the rack containing electronic equipment extending primarily in a plane, the electronic equipment being positioned in a useful compartment of the rack and cooled by forced convection. The electronic equipment is positioned in such a way that its main plane is parallel to the shelves. The rack comprises means for guiding an air flow used for the cooling of the electronic equipment item, the air flow penetrating into the useful compartment parallel to the plane of the electronic equipment item and at right angles to the direction of insertion of the rack into the platform.
Abstract:
Heat regulation system (1) for at least one equipment item (2) embedded onboard an aircraft, includes a thermal regulation circuit (5) connected to the equipment item(s) (2). The thermal regulation circuit (5) includes a modular thermal regulation device (6) adapted to receive a modifiable number of thermal regulation modules (8).
Abstract:
The present invention relates to a thermal control device of a component, the control device including: a power source, a converter able to convert a temperature variation into a resistance variation, and a cooling module including two faces, a first face at a first temperature and a second face at a second temperature, the difference between the first temperature and the second temperature depending on the current supplying the cooling module, the first face being in, contact with the component, the cooling module, the converter and the power source being arranged electrically so that the current supplying the converter decreases with a temperature increase and the current supplying the cooling module remains constant.
Abstract:
A piece of aeronautic equipment intended to equip an aircraft, the equipment (25) including a part intended to be arranged at a skin (27) of the aircraft and elements for heating the part, characterized in that the heating elements include a thermodynamic loop including a closed circuit in which a heat transfer fluid circulates, the closed circuit including an evaporator (14) associated with functional elements (25a) of the aircraft forming a heat source giving off heat during their operation and a zone in which a condensation of the heat transfer fluid can occur in the appendage to heat it, and in that outside the evaporator (14), the circuit in which the fluid circulates is formed by a tubular channel with an empty section.
Abstract:
The present invention relates to an electronic system comprising an electronic system comprising an electromechanical microsystem and a hermetic box encapsulating said microsystem. The box includes a fastening plane. The electromechanical microsystem includes a sensitive part and at least two beams connecting the sensitive part to the fastening plane. The beams are thermally coupled to the sensitive part and are electrically coupled to one another. The system further includes a thermal regulator of the electromechanical microsystem including an electrical circuit including at least two ends connected to the beams, and a circuit controller able to generate an electrical current in the electrical circuit to modify the temperature of the sensitive part.