Abstract:
This method comprises a step of determining a reference profile along a lateral trajectory precalculated comprising searching, in the precalculated lateral trajectory, at least one segment of discontinuity comprising a lateral discontinuity, determining a required distance corresponding to a minimum flight distance between the two segments bordering the discontinuity segment and integrating each required distance into the reference profile. This method further comprises a step of determining, on the basis of the reference profile, vertical predictions relating to a vertical trajectory of the aircraft and a step of determining, on the basis of the vertical predictions, a resulting lateral trajectory comprising, for each discontinuity segment, determining a substitution segment connecting the two corresponding bordering segments in a continuous manner.
Abstract:
Methods and devices for optimizing the climb of an aircraft or drone are provided. After an optimal continuous climb strategy has been determined, a lateral path is determined, in particular in terms of speeds and turn radii, based on vertical predictions computed in the previous step. Subsequently, computation results are displayed on one or more human-machine interfaces and the climb strategy is actually flown. Embodiments describe the use of altitude and speed constraints and/or settings in respect of speed and/or thrust and/or level-flight avoidance and/or gradient-variation minimization, and iteratively fitting parameters in order to make the profile of the current path coincide with the constrained profile in real time depending on the selected flight dynamics (e.g. energy sharing, constraint on climb gradient, constraint on the vertical climb rate). System (e.g. FMS) and software aspects are described.
Abstract:
A method of automatic determination of a descent and approach profile for an aircraft is based on a backward computation of propagation of a state of the aircraft along segments S(i) from a backward computation start point to the start point DECEL of onset of the deceleration of the aircraft. The method of automatic determination comprises for each segment S(i) a step of determining an optimal speed VOPT(i) of the aircraft over the range of speeds of the next aerodynamic configuration C(j+1) to be implemented as a function of a predetermined deceleration strategy and/or of predetermined constraints inherent in the flight procedure or introduced by the pilot in his flight plan.
Abstract:
A method for aiding navigation for an aircraft between a descent start point and a computation end point, comprises the computation steps of: collecting a flight plan consisting of a succession of waypoints and of the associated vertical constraints; determining a corridor consisting of a floor trajectory and of a ceiling trajectory defining the minimum and maximum altitudes permitted to the aircraft; splitting the corridor into several cells defined between two waypoints furthest apart and between which the ceiling trajectory is distinct from the floor trajectory; determining for at least one cell a vertical trajectory complying with the altitude constraints and comprising the longest possible IDLE segment; and a step consisting in determining and displaying maneuvering points of the aircraft making it possible to follow the target vertical trajectory.
Abstract:
A method is described that is implemented by computer for optimizing the vertical descent profile of an aircraft, the vertical profile being broken down into an altitude profile and a speed profile. One or more altitudes of passage can be determined by minimizing the overall deviation between the speed profile and one or more speed constraints previously received. The optimized descent profile can comprise one or more of these altitudes of passage. Different developments are described, in particular embodiments in which an optimized altitude of passage minimizes the engine thrust, the descent profile is of OPEN IDLE, FPA or VS type, the optimized descent profile is determined backward, a speed constraint is of AT or AT OR ABOVE type, and the use of the airbrakes. Display modalities are described, as are system and software aspects.
Abstract:
An aid method for controlling the energy situation of an aircraft. The method includes determining (i) an energy meeting point corresponding to a constraint point, (ii) a meeting type based on the constraint at the constraint point, (iii) an energy state of the aircraft relative to a reference altitude profile determined by a flight management system, (iv) a high-energy joining profile representative of a future path of the aircraft with an energy dissipation strategy, and (v) energy deviations relative to the high-energy joining profile. Determining the high energy joining profile is carried out backwards depending on the type of meeting and the energy state of the aircraft. The energy deviations are displayed to an operator of the aircraft.
Abstract:
A method for adapting an aircraft constant-gradient descent segment comprises: an acquisition step in which state variables characterizing the aircraft, environment variables characterizing the environment thereof and path variables characterizing the predicted path thereof at one of the initial and final points of the segment are acquired; a calculation step whereby a limit ground gradient for at least one performance criterion is calculated from the state variables, environment variables and path variables; a validity verification step checking the validity of the path initially predicted against the most restrictive limit ground gradient; and when the path initially predicted is not valid: a feasibility verification step checking the feasibility of a command to modify at least one state variable; if feasibility is verified, a prediction of executing the command; otherwise, a prediction of modifying one of the initial and final points of the segment with respect to constraints of the flight plan.
Abstract:
A method is provided for managing the flight of an aircraft flying a trajectory calculated by a flight management system. The trajectory necessitates at least one transition between two different aerodynamic configurations of the aircraft. The method comprises: extraction of performance data of the aircraft from a database, at least one item of performance data being a function of an aerodynamic configuration, selection between a first determination step and a second determination step, a step of determination of a start point and of an end point of the transition between two aerodynamic configurations and engine speeds of an aircraft during a flight, the determination step being implemented by the flight management system and chosen from among the first and second determination steps, the determination step calculating the trajectory by numerical integration of the equations representative of the dynamics of the aircraft making use of the performance data of the aircraft.