Abstract:
A method for determining a result path of an aircraft, the result path including a set of successive positions of the aircraft between an initial global point and a final global point that are predetermined for a mission of the aircraft is provided.The aircraft includes a plurality of calculating members, each able to guide the aircraft during at least part of the mission and to calculate an elementary path of the aircraft during that part, each elementary path including a set of successive positions of the aircraft between an initial elementary point and a final elementary point.The device includes calculating a portion of the result path from elementary paths coming from at least two distinct calculating members.
Abstract:
In the field of the calculation of the approach trajectory of an aircraft, and relating to a method for determining a corrected lateral approach trajectory as a function of the energy to be reabsorbed before the landing, and also to a flight management system making it possible to determine the corrected lateral trajectory, a method comprises: determining an energy of the aircraft Eaero upon crossing the runway threshold on the basis of a predetermined approach trajectory and of a current state of the aircraft, said state comprising at least one current altitude, a current ground speed and a mass of the aircraft; comparing the energy Eaero with a predetermined maximum energy Emax, and when the energy Eaero is greater than the energy Emax, determining the corrected lateral approach trajectory as a function of the difference between the energy of the aircraft Eaero and the maximum energy Emax.
Abstract:
A device and method for flight management of an aircraft along a flight plan comprises a plurality of waypoints comprising a computation of the temporal predictions determining the temporal situation of the aircraft for each waypoint of the flight plan, a temporal situation of the aircraft being defined by at least one set of information from among the group comprising the target time of transit at each waypoint the estimated minimum and maximum times of arrival at each waypoint, the estimated time of transit at the waypoint, and a formatting and display simultaneously presenting the temporal situations of the said plurality of waypoints.
Abstract:
A method for aiding navigation is provided, implemented in a flight management system, for the construction of a vertical trajectory of an aircraft following a predetermined lateral trajectory between a departure point and an arrival point; the departure point and arrival point furthermore being characterized by predefined altitudes, respectively Hd and Ha, and predefined speeds, respectively Vd and Va. The method comprises the steps of: selection of a transition manoeuvre in terms of altitude and speed from a predetermined list of manoeuvres; determination of a manoeuvre point PM on the lateral trajectory, of altitude Hd and of speed Vd, from which the transition manoeuvre must be initiated so as to allow the aircraft to reach at the arrival point the predefined speed Va and the predefined altitude Ha.
Abstract:
A method for aiding navigation for an aircraft between a descent start point and a computation end point, comprises the computation steps of: collecting a flight plan consisting of a succession of waypoints and of the associated vertical constraints; determining a corridor consisting of a floor trajectory and of a ceiling trajectory defining the minimum and maximum altitudes permitted to the aircraft; splitting the corridor into several cells defined between two waypoints furthest apart and between which the ceiling trajectory is distinct from the floor trajectory; determining for at least one cell a vertical trajectory complying with the altitude constraints and comprising the longest possible IDLE segment; and a step consisting in determining and displaying maneuvering points of the aircraft making it possible to follow the target vertical trajectory.
Abstract:
A method for assisting in the navigation of an aircraft comprises steps of calculating and displaying a linear deviation on a first linear section and an angular deviation on a second angular section. The method comprises a step of calculation of an anticipated deviation of the aircraft, expressed linearly or angularly, projected to a time DT, characteristic of a reaction time of the aircraft, and of a statistical error distribution associated with this anticipated deviation; and a step of calculation of a probability of exceeding a predetermined target deviation, by means of the anticipated deviation and of the statistical error distribution. The method also comprises a crew alert when the probability is above a predetermined threshold.
Abstract:
A method implemented by computer for the display of information relating to the flight of an aircraft comprises receiving indication of a selection of an arbitrary display zone on a screen of an onboard computer of the aircraft; and reconfiguring the display, in response to the indication. Developments describe several geometric transformations, various display reconfigurations (e.g. centering of the display), the use of systems third party to the aircraft (e.g. taxiing computer, ground client, maintenance, terrain monitoring, traffic, weather), associated operations of revisions of the flight plan, the use of display rules (notably associated with the flight situation), and the emergency deactivation of the display reconfigurations. Computer programs and associated systems are also described (notably Man-System Interface, virtual and/or augmented reality).
Abstract:
A method for determining a result path of an aircraft, the result path including a set of successive positions of the aircraft between an initial global point and a final global point that are predetermined for a mission of the aircraft is provided.The aircraft includes a plurality of calculating members, each able to guide the aircraft during at least part of the mission and to calculate an elementary path of the aircraft during that part, each elementary path including a set of successive positions of the aircraft between an initial elementary point and a final elementary point.The device includes calculating a portion of the result path from elementary paths coming from at least two distinct calculating members.
Abstract:
A method and device for determining a shifted circular segment on the basis of an initial circular segment, the shifted circular segment being shifted by a shift distance, the method being implemented by a computer dedicated to flight management, comprises: determining a shifted final point terminating a shifted circular segment, on the basis of the final point terminating the initial circular segment, through a shift of the final point determined on the basis of the shift distance and in the direction of shift, through the use of a straight line passing through the center of the initial circular segment and the final point of the initial circular segment, and determining a shifted circular segment on the basis of the initial circular segment by construction of a circular segment between the shifted final point associated with the preceding shifted segment and the shifted final point associated with the shifted segment.
Abstract:
A method for assisting in the navigation of an aircraft comprises steps of calculating and displaying a linear deviation on a first linear section and an angular deviation on a second angular section. The method comprises a calculation step for converting an angular deviation into an equivalent linear deviation, and, conversely, converting a linear deviation into an equivalent angular deviation. The method comprises a step of graphic representation, called unified monitoring, intended for the crew, of a deviation of the aircraft, on a lateral deviation axis and a vertical deviation axis; each of the deviations, lateral and vertical, being able to be represented on a linear scale, an angular scale or a mixed scale.