Abstract:
This method for managing the flight of an aircraft in a visual approach phase to a runway is implemented by an electronic flight management system and comprises: acquiring at least one set among a set of values of lateral visual approach trajectory parameters and a set of values of vertical visual approach trajectory parameters, at least one of said values of visual approach trajectory parameters being able to be designated by a user, computing at least one trajectory among a lateral visual approach trajectory from the values of said lateral visual approach trajectory parameters and a vertical visual approach trajectory from the values of said vertical visual approach trajectory parameters, and generating a visual approach trajectory to the runway from the lateral visual approach trajectory and/or the vertical visual approach trajectory.
Abstract:
A method and system, for flight management of an aircraft flying on a trajectory shifted with respect to a flight plan comprising a plurality of constrained waypoints, comprises a step of determining and displaying at least one point of the trajectory, termed decision point, beyond which the aircraft can no longer rejoin a constrained waypoint of the flight plan by determining a point of intersection between the trajectory and a rejoining trajectory steering towards the selected constrained waypoint, the rejoining trajectory complying with at least one predefined criterion.
Abstract:
Automatic flight information determination device for automatically determining flight control information for an accompanying mobile machine accompanying a leader mobile machine, said device being adapted for collecting the location data of the leader mobile machine from among the actual location data derived from measurements relating to the current location of the leader mobile machine and the current trajectory data of the accompanying mobile machine, and of determining, on the basis of said location data collected, the information items for piloting the accompanying mobile machine as a function of a set of at least two values to be adhered to with respect to the location defined by the data collected, said values to be adhered to being representative of the values included among: a minimum vertical/flight level separation value, a minimum longitudinal/along track separation value, and a minimum lateral/between tracks separation value.
Abstract:
A method of error detection of a flight management system coupled with a guidance of an aircraft according to a flight plan, comprises the steps of: generating a first reference guidance order, monitoring the integrity of the first reference position, when the first reference position is not monitored as being dependable: invalidating the first FMS assembly and the associated guidance system, when the first reference position and the first reference trajectory are monitored as being dependable: generating a first monitoring guidance order, generating a first reference flight control, generating a first monitoring flight control, in monitoring the integrity of the first reference guidance order when the first reference guidance order is not monitored as being dependable: invalidating the first FMS assembly and the associated guidance.
Abstract:
A method for creating a vertical trajectory profile of an aircraft by optimization of a criterion representative of a flight cost, comprises: performing a first iterative computation of a profile free of altitude constraints as long as a condition dependent on the criterion is not reached, replacing each free level of the constraint-free profile with a permitted level so as to generate an initial constrained profile comprising a plurality of permitted levels, and, for each level, an altitude change point and a plurality of speeds, and performing a second iterative computation of a profile in which the altitude levels to be reached remain constant, equal to the initial permitted levels of the initial constrained profile, as long as a condition dependent on the criterion is not reached.
Abstract:
An onboard flight management system in an aircraft comprises means for continuously calculating first geolocation data, from data received from at least one external geolocation device, comprising a current position and future positions of an aircraft along a trajectory sequenced in several portions and comprising second data comprising demands required by an international navigation procedure called “Required Navigation Performance”, or RNP, for all the portions of the trajectory. The management system additionally comprises a means for displaying first and second data all the way along the trajectory, the first and second data being represented graphically and simultaneously on the said display means in order to enable the pilot to anticipate the flight characteristics for the aircraft and make them converge toward the required demands of the next trajectory portion.
Abstract:
A method is provided for calculating the estimated navigation performance prediction for a trajectory associated with a list of segments of a flight plan. A method for displaying the navigation performance in a corridor trajectory so as to guarantee compliance with the navigation performance requirements while offering immediate viewing of the navigation latitude in a corridor is also provided.
Abstract:
A method of flight management and guidance of an aircraft executed by a flight management system FMS comprises the steps of: generating a reference trajectory, generating a short-term trajectory, periodically transmitting the short-term trajectory, generating a long-term trajectory, formatting the segments of the long-term trajectory, periodically transmitting the long-term trajectory, storing the long-term trajectory transmitted, testing the validity of the FMS sub-assembly, when the FMS sub-assembly is valid: identifying, by the autonomous guidance module, the active segment of the short-term trajectory, generating, by the autonomous guidance module, a first flight guidance order on the basis of the active segment of the short-term trajectory; when the FMS sub-assembly is not valid: identifying, by the autonomous guidance module, the active segment of the stored trajectory, generating, by the autonomous guidance module, a second flight guidance order on the basis of the active segment of the stored trajectory.
Abstract:
A computer-implemented method for optimizing a mission of an aircraft, the aircraft having a predefined flight plan between a starting point and an arrival point, the flight plan comprising a set of waypoints. The method comprises steps of: calculating, for the aircraft, a reference trajectory between the starting point and the arrival point, the reference trajectory comprising a set of segments and of intermediate points linking the segments of the reference trajectory; defining a search area in the reference trajectory between an initial position and a final position to be reached for this area; determining, in the search area, all possible shortcuts between the initial position and the final position, a shortcut being able to take into account any type of point, points of the flight plan and/or intermediate points of the reference trajectory; and identifying the combination of shortcuts corresponding to an optimum path according to an optimization criterion, the optimum path optimizing the mission of the aircraft in the search area.
Abstract:
A method, computer program and system are provided for calculating in an automatic manner a trajectory for rejoining a reference vertical profile of an aircraft. A reference vertical profile comprises a set of vertical constraints, and a method comprises a step of selecting an altitude constraint to be complied with, a step of calculating a vertical-profile prediction making it possible to comply with the constraint, a step of validating the vertical-profile prediction, if the vertical-profile prediction is validated, a step of applying the vertical-profile prediction, otherwise a step of determining the existence of a following altitude constraint to be complied with; if a following altitude constraint exists: a step of selecting a following altitude constraint to be complied with; a return to the step of detecting non-compliance with an altitude constraint; otherwise, a step of applying an exit procedure.