摘要:
A quantum nanomaterial having a bandgap that may be tuned to enable the quantum nanomaterial to detect IR radiation in selected regions including throughout the MWIR region and into the LWIR region is provided. The quantum nanomaterials may include tin telluride (SnTe) nanomaterials and/or lead tin telluride (PbxSn1-xTe) nanomaterials. Additionally, a method of manufacturing nanomaterial that is tunable for detecting IR radiation in selected regions, such as throughout the MWIR region and into the LWIR region, is also provided.
摘要:
A quantum nanomaterial having a bandgap that may be tuned to enable the quantum nanomaterial to detect IR radiation in selected regions including throughout the MWIR region and into the LWIR region is provided. The quantum nanomaterials may include tin telluride (SnTe) nanomaterials and/or lead tin telluride (PbxSn1-xTe) nanomaterials. Additionally, a method of manufacturing nanomaterial that is tunable for detecting IR radiation in selected regions, such as throughout the MWIR region and into the LWIR region, is also provided.
摘要:
A transducer assembly is provided. The transducer assembly includes a magnetic portion, a body, a tensile pulse transmitter, and a pulse and current control unit. The magnetic portion is configured to provide a magnetic field. The body is disposed within an opening of the magnetic portion, and has a conductive portion configured to pass electric current near a body surface oriented toward the test surface. The tensile pulse transmitter is disposed within a cavity of the body and configured to transmit a tensile pulse into the test object. The pulse and current control unit is configured to control the tensile pulse transmitted by the tensile pulse transmitter, and to provide a current that passes through the conductive portion of the body and the test object, whereby a force urging the transducer assembly and the test object toward each other is generated responsive to the magnetic field and the current.
摘要:
A quantum nanomaterial having a bandgap that may be tuned to enable the quantum nanomaterial to detect IR radiation in selected regions including throughout the MWIR region and into the LWIR region is provided. The quantum nanomaterials may include tin telluride (SnTe) nanomaterials and/or lead tin telluride (PbxSn1-xTe) nanomaterials. Additionally, a method of manufacturing nanomaterial that is tunable for detecting IR radiation in selected regions, such as throughout the MWIR region and into the LWIR region, is also provided.
摘要:
A transducer assembly is provided. The transducer assembly includes a magnetic portion, a body, a tensile pulse transmitter, and a pulse and current control unit. The magnetic portion is configured to provide a magnetic field. The body is disposed within an opening of the magnetic portion, and has a conductive portion configured to pass electric current near a body surface oriented toward the test surface. The tensile pulse transmitter is disposed within a cavity of the body and configured to transmit a tensile pulse into the test object. The pulse and current control unit is configured to control the tensile pulse transmitted by the tensile pulse transmitter, and to provide a current that passes through the conductive portion of the body and the test object, whereby a force urging the transducer assembly and the test object toward each other is generated responsive to the magnetic field and the current.
摘要:
A quantum nanomaterial having a bandgap that may be tuned to enable the quantum nanomaterial to detect IR radiation in selected regions including throughout the MWIR region and into the LWIR region is provided. The quantum nanomaterials may include tin telluride (SnTe) nanomaterials and/or lead tin telluride (PbxSn1-xTe) nanomaterials. Additionally, a method of manufacturing nanomaterial that is tunable for detecting IR radiation in selected regions, such as throughout the MWIR region and into the LWIR region, is also provided.