Abstract:
An approach of producing recombinant trimers that mimic native HIV-1 envelope trimers is developed. A recombinant protein forming the recombinant trimers encompasses a recombinant HIV-1 gp140 fused to a tag through a linker at C-terminus of the recombinant HIV-1 gp140. The linker is sufficiently long so that the tag is accessible for binding by a binding molecule bound on a solid matrix. After expressed in a cell, the recombinant protein is secreted into the culture medium and assembles into recombinant trimers therein. The recombinant trimers may be directly purified from the culture medium. Cleaved and uncleaved trimers from different clade viruses are produced.
Abstract:
A bacteriophage T4-based, multivalent/multicomponent, needle and adjuvant-free, mucosal vaccine by engineering spike trimers on capsid exterior and nucleocapsid protein in the interior is disclosed herein. Intranasal administration of this T4-COVID vaccine induces higher virus neutralization antibody titers against multiple variants, balanced Th1/Th2 antibody and cytokine responses, stronger CD4+ and CD8+ T cell immunity, and higher secretory IgA titers in sera and bronchoalveolar lavage with no effect on the gut microbiota, compared to vaccination of mice intramuscularly. The vaccine is stable at ambient temperature, induce apparent sterilizing immunity, and provide complete protection against original SARS-CoV-2 strain and its Delta variant with minimal lung histopathology. This mucosal vaccine is an excellent candidate for boosting immunity of immunized and/or as a second-generation vaccine for the unimmunized population. This needle-free platform could be used to develop effective vaccines against many other respiratory infectious pathogens including Flu and any future emerging epidemic and pandemic pathogens.
Abstract:
Described is an “artificial virus” (AV) programmed with biomolecules that can enter human cells and carry out precise human genome modification. The AVs comprise: at least one viral vector, such as bacteriophage T4; at least one therapeutic molecule, such as DNA, RNA, protein and their complex; and a lipid coating. Also described is a method of human genome modification, using such an AV, and a method of program such an AV.
Abstract:
Techniques from two basic approaches, structure-based immunogen design and phage T4 nanoparticle delivery, are developed to construct new plague vaccines. The NH2-terminal β-strand of F1 of Yersinia pestis is transplanted to the COOH-terminus of F1 of Yersinia pestis and the NH2-terminus sequence flanking the β-strand of F1 of Yersinia pestis is duplicated to eliminate polymerization but to retain the T cell epitopes. The mutated F1 is fused to the V antigen of Yersinia pestis to thereby form a fusion protein F1mut-V mutant, which produces a completely soluble monomer. The fusion protein F1mut-V is then arrayed on phage T4 nanoparticles via a small outer capsid protein, Soc, from a T4 phage or a T4-related phage. Both the soluble and T4 decorated F1mut-V provided approximately 100% protection to mice and rats against pneumonic plague evoked by high doses of Yersinia pestis CO92.
Abstract:
Described is an engineered viral particle programmed with T cell targeting specificity. The viral particles comprise: at least one viral vector, such as bacteriophage T4; and at least one CD4-binding protein displayed on the surface of the viral vector. Also described is a method of reactivate latent HIV-1 and cure patient with HIV-1 infection, using such an engineered viral particle.
Abstract:
Described is hybrid viral vector comprising: a first virus such as bacteriophage T4; one or more second virus such as adeno-associated virus (AAV) attached to the first virus through cross-bridges, such as avidin-biotin cross-bridges; one or more DNA molecules packaged in the first virus; one or more nucleic acid molecules packaged in the second virus; and one or more proteins displayed on the surface of the first virus. Also described are methods of making and using such a hybrid viral vector.
Abstract:
Described is T4 DNA packaging machine comprising: one or more DNA molecules packaged in a head of the T4 DNA packaging machine, one or more Hoc-fused proteins displayed on the head of the T4 DNA packaging machine, and one or more Soc-fused proteins displayed on the head of the T4 DNA packaging machine. Also described are methods of making and using such a T4 DNA packaging machine.
Abstract:
Described is hybrid viral vector comprising: a first virus such as bacteriophage T4; one or more second virus such as adeno-associated virus (AAV) attached to the first virus through cross-bridges, such as avidin-biotin cross-bridges; one or more DNA molecules packaged in the first virus; one or more nucleic acid molecules packaged in the second virus; and one or more proteins displayed on the surface of the first virus. Also described are methods of making and using such a hybrid viral vector.
Abstract:
Bivalent immunogenic compositions against anthrax and plague are disclosed herein. One bivalent immunogenic composition comprises a triple fusion protein containing three antigens, F1 and V from Yersinia pestis and PA antigen from Bacillus anthracis fused in-frame and retaining structural and functional integrity of all three antigens. Another bivalent immunogenic composition comprises bacteriophage nanoparticles arrayed with these three antigens on the capsid surface of the bacteriophage nanoparticles. These bivalent immunogenic compositions are able to elicit robust immune response in a subject administered said the bivalent immunogenic compositions and provide protection to the subject against sequential or simultaneous challenge with both anthrax and plague pathogens.
Abstract:
Bivalent immunogenic compositions against anthrax and plague are disclosed herein. One bivalent immunogenic composition comprises a triple fusion protein containing three antigens, F1 and V from Yersinia pestis and PA antigen from Bacillus anthracia fused in-frame and retaining structural and functional integrity of all three antigens. Another bivalent immunogenic composition comprises bacteriophage nanoparticles arrayed with these three antigens on the capsid surface of the bacteriophage nanoparticles. These bivalent immunogenic compositions are able to elicit robust immune response in a subject administered said the bivalent immunogenic compositions and provide protection to the subject against sequential or simultaneous challenge with both anthrax and plague pathogens.