摘要:
Triazole conjugated urea-based and thiourea-based scaffolds that have high binding affinity to PSMA are disclosed. These scaffolds can be radiolabeled and used to image cells and tumors that express PSMA. Methods of synthesizing radiofluorinated triazole conjugated urea-based and thiourea-based scaffolds also are disclosed.
摘要:
Highly potent and selective radionuclide-based imaging and therapy agents targeting carbonic anhydrase IX with minimum non-specific organ uptake are disclosed. Methods of imaging and/or treating carbonic anhydrase IX-expressing cells or tumors also are disclosed.
摘要:
Salicylic acid-based polymeric CEST contrast agents targeting prostate-specific membrane antigen, pharmaceutical composition comprising the same and methods of use thereof are disclosed.
摘要:
The invention provides a nanoparticle composition that is decorated with a urea-based small-molecule peptidomimetic inhibitor of prostate specific membrane antigen (PSMA), which is expressed by almost all solid tumors. This strategy takes advantage of both the avidity of the functionalized nanoparticle for binding to PSMA and the ability of the nanoparticle to be retained for longer periods of time in the tumor due to enhanced leakage via EPR into the tumor interstitium and poor clearance due to underdeveloped or non-existent lymphatics within the tumor.
摘要:
The present invention provides bivalent and multivalent ligands with a view to improving the affinity and pharmacokinetic properties of a urea class of PSMA inhibitors. The compounds and their synthesis can be generalized to multivalent compounds of other target antigens. Because they present multiple copies of the pharmacophore, multivalent ligands can bind to receptors with high avidity and affinity, thereby serving as powerful inhibitors. The modular multivalent scaffolds of the present invention, in one or more embodiments, contains a lysine-based (α-, ε-)dialkyne residue for incorporating two or more antigen binding moieties, such as PSMA binding Lys-Glu urea moieties, exploiting click chemistry and one or more additional lysine residues for subsequent modification with an imaging and/or therapeutic nuclides or a cytotoxic ligands for tumor cell killing.
摘要:
PSMA binding scaffolds with radioiodinated, radiobrominated and radioastatinated labeled prosthetic groups are disclosed. Pharmaceutical compositions and methods of treating PSMA expressing cells or tumors also are disclosed.
摘要:
The present invention provides a targeted nanoplex platform for in vivo imaging and theranostic imaging of cancer to simultaneously provide non-invasive assessment of tumor burden and cancer-selective treatments.
摘要:
Low-molecular weight gadolinium (Gd)-based MR contrast agents for PSMA-specific T1-weighted MR imaging are disclosed. The (Gd)-based MR contrast agents exhibit high binding affinity for PSMA and exhibit specific T1 contrast enhancement at PSMA+ cells. The PSMA-targeted Gd-based MR contrast agents can be used for PSMA-targeted imaging in vivo. 86Y-labeled PSMA-binding ureas also are provided, wherein the PSMA-binding ureas also are suitable for use with other radiotherapeutics.
摘要:
Theranostic probes comprising a porphyrin-based photosensitizer, a D-peptide linker, and a urea-based PSMA-targeting ligand and methods of their use for treating and/or imaging PMSA-expressing tumors are disclosed.
摘要:
Low-molecular weight gadolinium (Gd)-based MR contrast agents for PSMA-specific Ti-weighted MR imaging are disclosed. The (Gd)-based MR contrast agents exhibit high binding affinity for PSMA and exhibit specific Ti contrast enhancement at PSMA+ cells. The PSMA-targeted Gd-based MR contrast agents can be used for PSMA-targeted imaging in vivo. 86Y-labeled PSMA-binding ureas also are provided, wherein the PSMA-binding ureas also are suitable for use with other radiotherapeutics.