LEVER MECHANISMS FOR ANTI-PHASE MODE ISOLATION IN MEMS TUNING-FORK STRUCTURES
    2.
    发明申请
    LEVER MECHANISMS FOR ANTI-PHASE MODE ISOLATION IN MEMS TUNING-FORK STRUCTURES 有权
    用于MEMS调谐结构中的相位模式隔离的杠杆机制

    公开(公告)号:US20140260615A1

    公开(公告)日:2014-09-18

    申请号:US13840362

    申请日:2013-03-15

    IPC分类号: H02N1/00 G01P15/097

    摘要: A MEMS resonator includes two resonating masses having an anti-phase and in-phase resonance mode, each mode having a resonance frequency, and an anti-phase resonance levering system coupled to the two resonating masses to stiffen and/or dampen the in-phase resonance mode while leaving the anti-phase resonance mode compliant. This effectively raises the in-phase resonance frequency above the anti-phase resonance frequency, and potentially creates a large frequency separation between the two resonance modes. This reduces the energy transfer between the two modes, allowing for robustness to external acceleration, because the in-phase mode is of a higher frequency. The anti-phase resonance levering system is disposed between the two resonating masses as an internal levering mechanism, or is disposed around the two resonating masses as an external levering mechanism.

    摘要翻译: MEMS谐振器包括具有反相和同相谐振模式的两个谐振块,每个模式具有谐振频率,以及耦合到两个谐振块的反相谐振杠杆系统以加固和/或抑制同相 同时保持反相谐振模式的兼容性。 这有效地提高了高于反相谐振频率的同相谐振频率,并且潜在地在两个谐振模式之间产生大的频率间隔。 这降低了两种模式之间的能量传递,从而允许对外部加速度的鲁棒性,因为同相模式具有较高的频率。 反相谐振杠杆系统设置在作为内部杠杆机构的两个谐振块之间,或者作为外部杠杆机构设置在两个谐振块周围。

    Utilization of Mechanical Quadrature in Silicon MEMS Vibratory Gyroscope to Increase and Expand the Long Term In-Run Bias Stability
    3.
    发明申请
    Utilization of Mechanical Quadrature in Silicon MEMS Vibratory Gyroscope to Increase and Expand the Long Term In-Run Bias Stability 审中-公开
    机械正交在硅MEMS振动陀螺仪中的应用,以增加和扩大长期运行中的偏置稳定性

    公开(公告)号:US20150285658A1

    公开(公告)日:2015-10-08

    申请号:US14630387

    申请日:2015-02-24

    IPC分类号: G01C25/00 G01C19/5776

    CPC分类号: G01C25/00 G01C19/5776

    摘要: A method for self-compensation of the bias draft of the quadrature signal of a gyroscope. The method is a combination of a variety of sub-methods, which can include quadrature compensation, can be used to achieve the highest possible stability. The calibration methods include a temperature self-sensing algorithm utilizing the drive-mode resonance frequency for calibration of thermal drift in the mechanical parameters of the system, a sideband-ratio approach for direct detection of mechanical drive-mode amplitude, modifying the AC and DC components of the amplitude gain control (AGC) for improved stability, and an approach for compensation of thermal drift in the sense-mode pick off system by utilizing mechanical quadrature. By using some or all of the four methods of calibration above, the highest level of long term in-run bias stability can be achieved.

    摘要翻译: 一种陀螺仪正交信号偏置电流自补偿的方法。 该方法是各种子方法的组合,可以包括正交补偿,可以实现最高可能的稳定性。 校准方法包括利用驱动模式共振频率来校准系统的机械参数中的热漂移的温度自感知算法,用于直接检测机械驱动模式幅度的边带比方法,修改AC和DC 用于改善稳定性的幅度增益控制(AGC)的组件,以及通过利用机械正交来补偿感测模式拾取系统中的热漂移的方法。 通过使用上述四种校准方法中的一些或全部,可以实现最高水平的长期运行中偏置稳定性。

    Three-Dimensional Wafer-Scale Batch-Micromachined Sensor and Method of Fabrication for the Same
    4.
    发明申请
    Three-Dimensional Wafer-Scale Batch-Micromachined Sensor and Method of Fabrication for the Same 审中-公开
    三维晶圆分批微加工传感器及其制作方法

    公开(公告)号:US20130214461A1

    公开(公告)日:2013-08-22

    申请号:US13847624

    申请日:2013-03-20

    IPC分类号: B29C44/02

    摘要: A vibratory sensor is fabricated as a three-dimensional batch-micromachined shell adapted to vibrate and support elastic wave propagation and wave precession in the shell or membrane and at least one driving electrode and preferably a plurality of driving electrodes directly or indirectly coupled to the shell to excite and sustain the elastic waves in the shell. The pattern of elastic waves is determined by the configuration of the driving electrode(s). At least one sensing electrode and preferably a plurality of sensing electrodes are provided to detect the precession of the elastic wave pattern in the shell. The rotation of the shell induces precession of the elastic wave pattern in the shell which is usable to measure the rotation angle or rate of the vibratory sensor.

    摘要翻译: 制造振动传感器作为三维批量微机械加工的壳体,其适于振动并支撑壳体或膜中的弹性波传播和波形进动,以及至少一个驱动电极,优选地多个驱动电极直接或间接耦合到壳体 激发和维持壳中的弹性波。 弹性波的图案由驱动电极的结构决定。 提供至少一个感测电极和优选地多个感测电极以检测壳体中的弹性波形图案的进动。 壳体的旋转引起壳体中的弹性波纹的进动,其可用于测量振动传感器的旋转角度或速率。

    Method for batch fabrication of three-dimensional shells
    6.
    发明授权
    Method for batch fabrication of three-dimensional shells 有权
    批量制造三维壳的方法

    公开(公告)号:US09296133B2

    公开(公告)日:2016-03-29

    申请号:US13847624

    申请日:2013-03-20

    摘要: A vibratory sensor is fabricated as a three-dimensional batch-micromachined shell adapted to vibrate and support elastic wave propagation and wave precession in the shell or membrane and at least one driving electrode and preferably a plurality of driving electrodes directly or indirectly coupled to the shell to excite and sustain the elastic waves in the shell. The pattern of elastic waves is determined by the configuration of the driving electrode(s). At least one sensing electrode and preferably a plurality of sensing electrodes are provided to detect the precession of the elastic wave pattern in the shell. The rotation of the shell induces precession of the elastic wave pattern in the shell which is usable to measure the rotation angle or rate of the vibratory sensor.

    摘要翻译: 制造振动传感器作为三维批量微机械加工的壳体,其适于振动并支撑壳体或膜中的弹性波传播和波形进动,以及至少一个驱动电极,优选地多个驱动电极直接或间接耦合到壳体 激发和维持壳中的弹性波。 弹性波的图案由驱动电极的结构决定。 提供至少一个感测电极和优选地多个感测电极以检测壳体中的弹性波形图案的进动。 壳体的旋转引起壳体中的弹性波纹的进动,其可用于测量振动传感器的旋转角度或速率。

    Microfabrication of high quality three dimensional structures using wafer-level glassblowing of fused quartz and ultra low expansion glasses
    7.
    发明授权
    Microfabrication of high quality three dimensional structures using wafer-level glassblowing of fused quartz and ultra low expansion glasses 有权
    使用熔融石英和超低膨胀玻璃的晶片级玻璃吹制高品质三维结构的微加工

    公开(公告)号:US09139417B2

    公开(公告)日:2015-09-22

    申请号:US13838132

    申请日:2013-03-15

    摘要: A high temperature micro-glassblowing process and a novel inverted-wineglass architecture that provides self-aligned stem structures. The fabrication process involves the etching of a fused quartz substrate wafer. A TSG or fused quartz device layer is then bonded onto the fused quartz substrate, creating a trapped air pocket or cavity between the substrate and the TSG device layer. The substrate and TSG device layer 14 are then heated at an extremely high temperature of approximately 1700° C., forming an inverted wineglass structure. Finally, the glassblown structure is cut or etched from the substrate to create a three dimensional wineglass resonator micro-device. The inverted wineglass structure may be used as a high performance resonator for use as a key element in precision clock resonators, dynamic MEMS sensors, and MEMS inertial sensors.

    摘要翻译: 高温微玻璃吹制工艺和提供自对准茎结构的新型倒酒杯结构。 制造工艺涉及对熔融石英衬底晶片的蚀刻。 然后将TSG或熔融石英器件层接合到熔融石英衬底上,在衬底和TSG器件层之间产生截留的气穴或腔。 然后将衬底和TSG器件层14在大约1700℃的极高温度下加热,形成倒置的酒杯结构。 最后,从衬底切割或蚀刻玻璃泡结构,以形成三维酒杯谐振器微器件。 反向酒杯结构可用作高性能谐振器,用作精密时钟谐振器,动态MEMS传感器和MEMS惯性传感器中的关键元件。

    Multi-Axis Chip-Scale MEMS Inertial Measurement Unit (IMU) Based on Frequency Modulation
    8.
    发明申请
    Multi-Axis Chip-Scale MEMS Inertial Measurement Unit (IMU) Based on Frequency Modulation 有权
    基于频率调制的多轴芯片级MEMS惯性测量单元(IMU)

    公开(公告)号:US20140208823A1

    公开(公告)日:2014-07-31

    申请号:US13752044

    申请日:2013-01-28

    IPC分类号: G01P21/00

    摘要: A multi-axis microelectromechanical-systems (MEMS) inertial measurement unit (IMU) is fabricated in a vacuum sealed single packaged device. An FM vibratory gyroscope and an FM resonant accelerometer both for generating FM output signals is fabricated in the silicon chip using MEMS. A signal processor is coupled to the an FM vibratory gyroscope and to the FM resonant accelerometer for receiving the FM gyroscopic output signals and the FM accelerometer output signals. The signal processor generates simultaneous and decoupled measurement of input acceleration, in put rotation rate, and temperature and/or temperature distribution within the IMU, self-calibration of the biases and scale factors of the IMU and its support electronics against temperature variations and other common mode errors, and reduction of the cross axis sensitivity by reducing acceleration errors in the gyroscope and rotation errors in the accelerometer.

    摘要翻译: 在真空密封的单一封装装置中制造多轴微机电系统(MEMS)惯性测量单元(IMU)。 用于产生FM输出信号的FM振动陀螺仪和FM谐振加速度计使用MEMS制造在硅芯片中。 信号处理器耦合到FM振动陀螺仪和FM谐振加速度计,用于接收FM陀螺仪输出信号和FM加速度计输出信号。 信号处理器产生输入加速度,置位旋转速率以及IMU内的温度和/或温度分布的同时和去耦测量,IMU及其支持电子器件的温度变化和其他常见的偏置和比例因子的自校准 模式误差,减少陀螺仪中的加速度误差和加速度计中的旋转误差来降低交叉轴灵敏度。

    Multi-Axis Chip-Scale MEMS Inertial Measurement Unit (IMU) Based on Frequency Modulation
    9.
    发明申请
    Multi-Axis Chip-Scale MEMS Inertial Measurement Unit (IMU) Based on Frequency Modulation 审中-公开
    基于频率调制的多轴芯片级MEMS惯性测量单元(IMU)

    公开(公告)号:US20160169935A1

    公开(公告)日:2016-06-16

    申请号:US15048763

    申请日:2016-02-19

    IPC分类号: G01P21/00

    摘要: A multi-axis microelectromechanical-systems (MEMS) inertial measurement unit (IMU) is fabricated in a vacuum sealed single packaged device. An FM vibratory gyroscope and an FM resonant accelerometer both for generating FM output signals is fabricated in the silicon chip using MEMS. A signal processor is coupled to the an FM vibratory gyroscope and to the FM resonant accelerometer for receiving the FM gyroscopic output signals and the FM accelerometer output signals. The signal processor generates simultaneous and decoupled measurement of input acceleration, input rotation rate, and temperature and/or temperature distribution within the IMU, self-calibration of the biases and scale factors of the IMU and its support electronics against temperature variations and other common mode errors, and reduction of the cross axis sensitivity by reducing acceleration errors in the gyroscope and rotation errors in the accelerometer.

    摘要翻译: 在真空密封的单一封装装置中制造多轴微机电系统(MEMS)惯性测量单元(IMU)。 用于产生FM输出信号的FM振动陀螺仪和FM谐振加速度计使用MEMS制造在硅芯片中。 信号处理器耦合到FM振动陀螺仪和FM谐振加速度计,用于接收FM陀螺仪输出信号和FM加速度计输出信号。 信号处理器产生输入加速度,输入旋转速率以及IMU内的温度和/或温度分布的同时和去耦测量,对IMU及其支持电子器件的温度变化和其他共模的偏差和比例因子进行自校准 误差,减少陀螺仪中的加速度误差和加速度计中的旋转误差来降低交叉轴灵敏度。

    Multi-axis chip-scale MEMS inertial measurement unit (IMU) based on frequency modulation
    10.
    发明授权
    Multi-axis chip-scale MEMS inertial measurement unit (IMU) based on frequency modulation 有权
    基于频率调制的多轴芯片级MEMS惯性测量单元(IMU)

    公开(公告)号:US09274136B2

    公开(公告)日:2016-03-01

    申请号:US13752044

    申请日:2013-01-28

    摘要: A multi-axis microelectromechanical-systems (MEMS) inertial measurement unit (IMU) is fabricated in a vacuum sealed single packaged device. An FM vibratory gyroscope and an FM resonant accelerometer both for generating FM output signals is fabricated in the silicon chip using MEMS. A signal processor is coupled to the an FM vibratory gyroscope and to the FM resonant accelerometer for receiving the FM gyroscopic output signals and the FM accelerometer output signals. The signal processor generates simultaneous and decoupled measurement of input acceleration, input rotation rate, and temperature and/or temperature distribution within the IMU, self-calibration of the biases and scale factors of the IMU and its support electronics against temperature variations and other common mode errors, and reduction of the cross axis sensitivity by reducing acceleration errors in the gyroscope and rotation errors in the accelerometer.

    摘要翻译: 在真空密封的单一封装装置中制造多轴微机电系统(MEMS)惯性测量单元(IMU)。 用于产生FM输出信号的FM振动陀螺仪和FM谐振加速度计使用MEMS制造在硅芯片中。 信号处理器耦合到FM振动陀螺仪和FM谐振加速度计,用于接收FM陀螺仪输出信号和FM加速度计输出信号。 信号处理器产生输入加速度,输入旋转速率以及IMU内的温度和/或温度分布的同时和去耦测量,对IMU及其支持电子器件的温度变化和其他共模的偏差和比例因子进行自校准 误差,减少陀螺仪中的加速度误差和加速度计中的旋转误差来降低交叉轴灵敏度。