摘要:
A multi-axis microelectromechanical-systems (MEMS) inertial measurement unit (IMU) is fabricated in a vacuum sealed single packaged device. An FM vibratory gyroscope and an FM resonant accelerometer both for generating FM output signals is fabricated in the silicon chip using MEMS. A signal processor is coupled to the an FM vibratory gyroscope and to the FM resonant accelerometer for receiving the FM gyroscopic output signals and the FM accelerometer output signals. The signal processor generates simultaneous and decoupled measurement of input acceleration, input rotation rate, and temperature and/or temperature distribution within the IMU, self-calibration of the biases and scale factors of the IMU and its support electronics against temperature variations and other common mode errors, and reduction of the cross axis sensitivity by reducing acceleration errors in the gyroscope and rotation errors in the accelerometer.
摘要:
A MEMS resonator includes two resonating masses having an anti-phase and in-phase resonance mode, each mode having a resonance frequency, and an anti-phase resonance levering system coupled to the two resonating masses to stiffen and/or dampen the in-phase resonance mode while leaving the anti-phase resonance mode compliant. This effectively raises the in-phase resonance frequency above the anti-phase resonance frequency, and potentially creates a large frequency separation between the two resonance modes. This reduces the energy transfer between the two modes, allowing for robustness to external acceleration, because the in-phase mode is of a higher frequency. The anti-phase resonance levering system is disposed between the two resonating masses as an internal levering mechanism, or is disposed around the two resonating masses as an external levering mechanism.
摘要:
A method for self-compensation of the bias draft of the quadrature signal of a gyroscope. The method is a combination of a variety of sub-methods, which can include quadrature compensation, can be used to achieve the highest possible stability. The calibration methods include a temperature self-sensing algorithm utilizing the drive-mode resonance frequency for calibration of thermal drift in the mechanical parameters of the system, a sideband-ratio approach for direct detection of mechanical drive-mode amplitude, modifying the AC and DC components of the amplitude gain control (AGC) for improved stability, and an approach for compensation of thermal drift in the sense-mode pick off system by utilizing mechanical quadrature. By using some or all of the four methods of calibration above, the highest level of long term in-run bias stability can be achieved.
摘要:
A vibratory sensor is fabricated as a three-dimensional batch-micromachined shell adapted to vibrate and support elastic wave propagation and wave precession in the shell or membrane and at least one driving electrode and preferably a plurality of driving electrodes directly or indirectly coupled to the shell to excite and sustain the elastic waves in the shell. The pattern of elastic waves is determined by the configuration of the driving electrode(s). At least one sensing electrode and preferably a plurality of sensing electrodes are provided to detect the precession of the elastic wave pattern in the shell. The rotation of the shell induces precession of the elastic wave pattern in the shell which is usable to measure the rotation angle or rate of the vibratory sensor.
摘要:
A method for self-compensation of the bias draft of the quadrature signal of a gyroscope. The method is a combination of a variety of sub-methods, which can include quadrature compensation, can be used to achieve the highest possible stability. The calibration methods include a temperature self-sensing algorithm utilizing the drive-mode resonance frequency for calibration of thermal drift in the mechanical parameters of the system, a sideband-ratio approach for direct detection of mechanical drive-mode amplitude, modifying the AC and DC components of the amplitude gain control (AGC) for improved stability, and an approach for compensation of thermal drift in the sense-mode pick off system by utilizing mechanical quadrature. By using some or all of the four methods of calibration above, the highest level of long term in-run bias stability can be achieved.
摘要:
A vibratory sensor is fabricated as a three-dimensional batch-micromachined shell adapted to vibrate and support elastic wave propagation and wave precession in the shell or membrane and at least one driving electrode and preferably a plurality of driving electrodes directly or indirectly coupled to the shell to excite and sustain the elastic waves in the shell. The pattern of elastic waves is determined by the configuration of the driving electrode(s). At least one sensing electrode and preferably a plurality of sensing electrodes are provided to detect the precession of the elastic wave pattern in the shell. The rotation of the shell induces precession of the elastic wave pattern in the shell which is usable to measure the rotation angle or rate of the vibratory sensor.
摘要:
A high temperature micro-glassblowing process and a novel inverted-wineglass architecture that provides self-aligned stem structures. The fabrication process involves the etching of a fused quartz substrate wafer. A TSG or fused quartz device layer is then bonded onto the fused quartz substrate, creating a trapped air pocket or cavity between the substrate and the TSG device layer. The substrate and TSG device layer 14 are then heated at an extremely high temperature of approximately 1700° C., forming an inverted wineglass structure. Finally, the glassblown structure is cut or etched from the substrate to create a three dimensional wineglass resonator micro-device. The inverted wineglass structure may be used as a high performance resonator for use as a key element in precision clock resonators, dynamic MEMS sensors, and MEMS inertial sensors.
摘要:
A multi-axis microelectromechanical-systems (MEMS) inertial measurement unit (IMU) is fabricated in a vacuum sealed single packaged device. An FM vibratory gyroscope and an FM resonant accelerometer both for generating FM output signals is fabricated in the silicon chip using MEMS. A signal processor is coupled to the an FM vibratory gyroscope and to the FM resonant accelerometer for receiving the FM gyroscopic output signals and the FM accelerometer output signals. The signal processor generates simultaneous and decoupled measurement of input acceleration, in put rotation rate, and temperature and/or temperature distribution within the IMU, self-calibration of the biases and scale factors of the IMU and its support electronics against temperature variations and other common mode errors, and reduction of the cross axis sensitivity by reducing acceleration errors in the gyroscope and rotation errors in the accelerometer.
摘要:
A multi-axis microelectromechanical-systems (MEMS) inertial measurement unit (IMU) is fabricated in a vacuum sealed single packaged device. An FM vibratory gyroscope and an FM resonant accelerometer both for generating FM output signals is fabricated in the silicon chip using MEMS. A signal processor is coupled to the an FM vibratory gyroscope and to the FM resonant accelerometer for receiving the FM gyroscopic output signals and the FM accelerometer output signals. The signal processor generates simultaneous and decoupled measurement of input acceleration, input rotation rate, and temperature and/or temperature distribution within the IMU, self-calibration of the biases and scale factors of the IMU and its support electronics against temperature variations and other common mode errors, and reduction of the cross axis sensitivity by reducing acceleration errors in the gyroscope and rotation errors in the accelerometer.
摘要:
A multi-axis microelectromechanical-systems (MEMS) inertial measurement unit (IMU) is fabricated in a vacuum sealed single packaged device. An FM vibratory gyroscope and an FM resonant accelerometer both for generating FM output signals is fabricated in the silicon chip using MEMS. A signal processor is coupled to the an FM vibratory gyroscope and to the FM resonant accelerometer for receiving the FM gyroscopic output signals and the FM accelerometer output signals. The signal processor generates simultaneous and decoupled measurement of input acceleration, input rotation rate, and temperature and/or temperature distribution within the IMU, self-calibration of the biases and scale factors of the IMU and its support electronics against temperature variations and other common mode errors, and reduction of the cross axis sensitivity by reducing acceleration errors in the gyroscope and rotation errors in the accelerometer.