Abstract:
An ORIF implant has an electronics module with a stimulus light and optical sensors for sensing fluorescent emissions coupled to a near-field digital radio. The implant is used with a near-field radio to receive a sequence of fluorescent emissions readings from the implant into a processor that fits the sequence of readings to a bone-specific kinetic model that is a superposition of a plug flow model of periosteal perfusion and a two-compartment model of endosteal perfusion of perfusion of bone. A system for use during ORIF surgery has an injector for fluorescent dye, a camera to send a sequence of images of fluorescent emissions from fluorescent dye in a bone of a subject to an image processor when the bone is illuminated with a stimulus light, the processor configured to fit the sequence of images to a model of perfusion of bone.
Abstract:
A monitor for pulsed high energy radiation therapy using a radiation beam passing through a treatment zone, the radiation of 0.2 MEV or greater; has a camera for imaging Cherenkov light from the treatment zone; apparatus for preventing interference by room lighting, the camera synchronized to pulses of the radiation beam; and an image processor adapted to determine extent of the beam area on the patient skin from the images. Additionally an image processor determines cumulative skin dose in the treatment zone from the images. In embodiments, the processor uses a three-dimensional model of a subject to determine mapping of image intensity in images of Cherenkov light to radiation intensity in skin, applies the mapping to images of Cherenkov light to verify skin dose delivered, and accumulates skin dose by summing the maps of skin dose.
Abstract:
A phosphor excitable by X-ray and blue-light emits light in the near-infrared (NIR-II, 1000-1700 nanometers) forms nanoparticles less than 200 nanometers diameter. The nanoparticles are tagged by coating with silica, then conjugating with polyethylene glycol (PEG) and tissue-selective compounds such as antibodies, nucleic acid chains, and other ligands. In embodiments, we administer the tagged nanoparticles to a subject, then localize the nanoparticles, and thus antigen-bearing tissues, by irradiating the subject with X-ray or other radiation beams while imaging near infrared light emitted from the subject. The nanoparticles are made by mixing 1-50 micron calcium oxide and germanium oxide powders with dilute nitric acid, adding chromium (III) nitrate at a ratio to germanium between 0.001 and 0.1, adding tartaric acid solution with molar ratio to metal ions between 1-10, and adjusting pH to 0.1-4 with nitric acid, then later heating to form a sol, oven drying, and calcinating the sol.
Abstract:
A monitor for pulsed high energy radiation therapy using a radiation beam passing through a treatment zone, the radiation of 0.2 MEV or greater; has a camera for imaging Cherenkov light from the treatment zone; apparatus for preventing interference by room lighting, the camera synchronized to pulses of the radiation beam; and an image processor adapted to determine extent of the beam area on the patient skin from the images. Additionally an image processor determines cumulative skin dose in the treatment zone from the images. In embodiments, the processor uses a three-dimensional model of a subject to determine mapping of image intensity in images of Cherenkov light to radiation intensity in skin, applies the mapping to images of Cherenkov light to verify skin dose delivered, and accumulates skin dose by summing the maps of skin dose.