Abstract:
A phosphor excitable by X-ray and blue-light emits light in the near-infrared (NIR-II, 1000-1700 nanometers) forms nanoparticles less than 200 nanometers diameter. The nanoparticles are tagged by coating with silica, then conjugating with polyethylene glycol (PEG) and tissue-selective compounds such as antibodies, nucleic acid chains, and other ligands. In embodiments, we administer the tagged nanoparticles to a subject, then localize the nanoparticles, and thus antigen-bearing tissues, by irradiating the subject with X-ray or other radiation beams while imaging near infrared light emitted from the subject. The nanoparticles are made by mixing 1-50 micron calcium oxide and germanium oxide powders with dilute nitric acid, adding chromium (III) nitrate at a ratio to germanium between 0.001 and 0.1, adding tartaric acid solution with molar ratio to metal ions between 1-10, and adjusting pH to 0.1-4 with nitric acid, then later heating to form a sol, oven drying, and calcinating the sol.
Abstract:
Methods are discussed for producing single-crystal shapes on amorphous materials. A first method deposits a layer of Germanium-Tin (GeSn) alloy comprising between three and sixteen atomic-percent tin on material incapable of seeding crystal formation, the layer is photolithographically defined into a shape having a point having radius less than 100 nanometers; and the shape is annealed by heating to a temperature below 450 degrees Celsius. A second method also photolithographically defines a shape on a layer of GeSn, then uses a laser to heat and crystalize seed spot on the shape; and anneals the shape by heating and thereby crystalizing additional GeSn alloy of the shape. In embodiments, the crystalized GeSn serves to seed InGaP and/or InGaAs layers that may serve together with the GeSn as layers of a tandem photovoltaic cell.
Abstract:
Disclosed are infrared (IR) light detectors. The detectors operate by generating hot electrons in a metallic absorber layer on photon absorption, the electrons being transported through an energy barrier of an insulating layer to a metal or semiconductor conductive layer. The energy barrier is set to bar response to wavelengths longer than a maximum wavelength. Particular embodiments also have a pattern of metallic shapes above the metallic absorber layer that act to increase photon absorption while reflecting photons of short wavelengths; these particular embodiments have a band-pass response.
Abstract:
Disclosed are infrared (IR) light detectors. The detectors operate by generating hot electrons in a metallic absorber layer on photon absorption, the electrons being transported through an energy barrier of an insulating layer to a metal or semiconductor conductive layer. The energy barrier is set to bar response to wavelengths longer than a maximum wavelength. Particular embodiments also have a pattern of metallic shapes above the metallic absorber layer that act to increase photon absorption while reflecting photons of short wavelengths; these particular embodiments have a band-pass response.
Abstract:
A speckle-suppressing lighting system includes an optical waveguide, a first solid-state light source, a second solid-state light source, and a diffuser. The optical waveguide has a proximal end and a distal end. At least part of the diffuser is between the proximal end and the distal end. The first solid-state light source is optically coupled to the optical waveguide near the proximal end, and emits a first light beam that propagates toward the distal end and has a first center wavelength. The second solid-state light source is optically coupled to the optical waveguide near the proximal end, and emits a second light beam that propagates toward the distal end and has a second center wavelength differing from the first center wavelength. The diffuser diffuses the first light beam and the second light beam.
Abstract:
Disclosed are infrared (IR) light detectors. The detectors operate by generating hot electrons in a metallic absorber layer on photon absorption, the electrons being transported through an energy barrier of an insulating layer to a metal or semiconductor conductive layer. The energy barrier is set to bar response to wavelengths longer than a maximum wavelength. Particular embodiments also have a pattern of metallic shapes above the metallic absorber layer that act to increase photon absorption while reflecting photons of short wavelengths; these particular embodiments have a band-pass response.
Abstract:
A speckle-suppressing lighting system includes an optical waveguide, a first solid-state light source, a second solid-state light source, and a diffuser. The optical waveguide has a proximal end and a distal end. At least part of the diffuser is between the proximal end and the distal end. The first solid-state light source is optically coupled to the optical waveguide near the proximal end, and emits a first light beam that propagates toward the distal end and has a first center wavelength. The second solid-state light source is optically coupled to the optical waveguide near the proximal end, and emits a second light beam that propagates toward the distal end and has a second center wavelength differing from the first center wavelength. The diffuser diffuses the first light beam and the second light beam.
Abstract:
A selectively-absorbing material includes a silicone polymer and transition-metal oxide nanoparticles dispersed therein. Each of the transition-metal oxide nanoparticles includes manganese. A solar receiver includes (i) a metal substrate including an etched surface having a microroughness between 0.05 micrometers and two micrometers; (ii) a polymer matrix disposed on the etched surface; and (iii) transition-metal oxide nanoparticles dispersed within the polymer matrix. A method for producing transition-metal oxide nanoparticles includes recrystallizing a plurality of two-element nanoparticles at a temperature between 300 and 700° C. The plurality of two-element nanoparticles includes at least two of (i) copper oxide nanoparticles, (ii) manganese oxide nanoparticles, and (iii) iron oxide nanoparticles. A method for fabricating a selective-absorber includes etching a top surface of a metal substrate; depositing a polymer-matrix composite on the etched top surface; and interdiffusing the polymer-matrix composite and the metal substrate. The polymer-matrix composite includes transition-metal oxide nanoparticles dispersed therein.
Abstract:
An optical interconnect system has first and second waveguides each with wedge-shaped cross-section at a first end, disposed over an optical modulator. The optical modulator is a surface-plasmon multi quantum well (SP-MQW) modulator, the first waveguide an input waveguide and the second waveguide configured an output waveguide. In embodiments the SP-MQW modulator has multiple semiconductor layers disposed atop a lower metal layer between 10 and 300 nanometers thick and configured such that incident light is reflected at the lower metal layer unless a voltage is applied to the semiconductor layers, when incident light is coupled into a surface plasmon mode in the lower metal layer.
Abstract:
An optical interconnect system has first and second waveguides each with wedge-shaped cross-section at a first end, disposed over an optical modulator. The optical modulator is a surface-plasmon multi quantum well (SP-MQW) modulator, the first waveguide an input waveguide and the second waveguide configured an output waveguide. In embodiments the SP-MQW modulator has multiple semiconductor layers disposed atop a lower metal layer between 10 and 300 nanometers thick and configured such that incident light is reflected at the lower metal layer unless a voltage is applied to the semiconductor layers, when incident light is coupled into a surface plasmon mode in the lower metal layer.