MEDICAL IMAGING TECHNIQUE USING X-RAY TO NEAR-INFRARED DOWNCONVERTING NANOPOWDER

    公开(公告)号:US20210353778A1

    公开(公告)日:2021-11-18

    申请号:US17322577

    申请日:2021-05-17

    Abstract: A phosphor excitable by X-ray and blue-light emits light in the near-infrared (NIR-II, 1000-1700 nanometers) forms nanoparticles less than 200 nanometers diameter. The nanoparticles are tagged by coating with silica, then conjugating with polyethylene glycol (PEG) and tissue-selective compounds such as antibodies, nucleic acid chains, and other ligands. In embodiments, we administer the tagged nanoparticles to a subject, then localize the nanoparticles, and thus antigen-bearing tissues, by irradiating the subject with X-ray or other radiation beams while imaging near infrared light emitted from the subject. The nanoparticles are made by mixing 1-50 micron calcium oxide and germanium oxide powders with dilute nitric acid, adding chromium (III) nitrate at a ratio to germanium between 0.001 and 0.1, adding tartaric acid solution with molar ratio to metal ions between 1-10, and adjusting pH to 0.1-4 with nitric acid, then later heating to form a sol, oven drying, and calcinating the sol.

    SPECKLE-SUPPRESSING LIGHTING SYSTEM

    公开(公告)号:US20230100241A1

    公开(公告)日:2023-03-30

    申请号:US17953129

    申请日:2022-09-26

    Abstract: A speckle-suppressing lighting system includes an optical waveguide, a first solid-state light source, a second solid-state light source, and a diffuser. The optical waveguide has a proximal end and a distal end. At least part of the diffuser is between the proximal end and the distal end. The first solid-state light source is optically coupled to the optical waveguide near the proximal end, and emits a first light beam that propagates toward the distal end and has a first center wavelength. The second solid-state light source is optically coupled to the optical waveguide near the proximal end, and emits a second light beam that propagates toward the distal end and has a second center wavelength differing from the first center wavelength. The diffuser diffuses the first light beam and the second light beam.

    Speckle-suppressing lighting system

    公开(公告)号:US12001028B2

    公开(公告)日:2024-06-04

    申请号:US17953129

    申请日:2022-09-26

    CPC classification number: G02B27/48 G02B6/0006 G02B6/0008

    Abstract: A speckle-suppressing lighting system includes an optical waveguide, a first solid-state light source, a second solid-state light source, and a diffuser. The optical waveguide has a proximal end and a distal end. At least part of the diffuser is between the proximal end and the distal end. The first solid-state light source is optically coupled to the optical waveguide near the proximal end, and emits a first light beam that propagates toward the distal end and has a first center wavelength. The second solid-state light source is optically coupled to the optical waveguide near the proximal end, and emits a second light beam that propagates toward the distal end and has a second center wavelength differing from the first center wavelength. The diffuser diffuses the first light beam and the second light beam.

    SOLAR RECEIVER, SELECTIVELY ABSORBING MATERIAL, AND ASSOCIATED FABRICATION METHODS

    公开(公告)号:US20210348023A1

    公开(公告)日:2021-11-11

    申请号:US17176519

    申请日:2021-02-16

    Abstract: A selectively-absorbing material includes a silicone polymer and transition-metal oxide nanoparticles dispersed therein. Each of the transition-metal oxide nanoparticles includes manganese. A solar receiver includes (i) a metal substrate including an etched surface having a microroughness between 0.05 micrometers and two micrometers; (ii) a polymer matrix disposed on the etched surface; and (iii) transition-metal oxide nanoparticles dispersed within the polymer matrix. A method for producing transition-metal oxide nanoparticles includes recrystallizing a plurality of two-element nanoparticles at a temperature between 300 and 700° C. The plurality of two-element nanoparticles includes at least two of (i) copper oxide nanoparticles, (ii) manganese oxide nanoparticles, and (iii) iron oxide nanoparticles. A method for fabricating a selective-absorber includes etching a top surface of a metal substrate; depositing a polymer-matrix composite on the etched top surface; and interdiffusing the polymer-matrix composite and the metal substrate. The polymer-matrix composite includes transition-metal oxide nanoparticles dispersed therein.

Patent Agency Ranking