Abstract:
A polysiloxane-polyalkylene glycol block copolymer is obtained by reacting a polysiloxane (A) having any functional group selected from a carboxylic anhydride group, a hydroxyl group, an epoxy group, a carboxyl group, and an amino group with a polyalkylene glycol (B) having any functional group selected from a carboxylic anhydride group, a hydroxyl group, a carboxyl group, an amino group, an epoxy group, a thiol group, and an isocyanate group, wherein a content of a structure derived from the polysiloxane (A) is 20% by mass or more and 90% by mass or less with respect to 100% by mass of the polysiloxane-polyalkylene glycol block copolymer.
Abstract:
A method produces polyamide fine particles by polymerizing a polyamide monomer (A) in the presence of a polymer (B) at a temperature equal to or higher than the crystallization temperature of a polyamide to be obtained, wherein the polyamide monomer (A) and the polymer (B) are homogeneously dissolved at the start of polymerization, and polyamide fine particles are precipitated after the polymerization. Polyamide fine particles have a number average particle size of 0.1 to 100 μm, a sphericity of 90 or more, a particle size distribution index of 3.0 or less, a linseed oil absorption of 100 mL/100 g or less, and a crystallization temperature of 150° C. or more. In particular, a polyamide having a high crystallization temperature includes fine particles having a smooth surface, a narrow particle size distribution, and high sphericity.
Abstract:
By first forming an emulsion in a system that separates into two phases which include a solution phase containing an ethylene-vinyl alcohol copolymer (A) as the main component and a solution phase containing a polymer (B) different from the ethylene-vinyl alcohol copolymer (A) as the main component when the copolymer (A), the polymer (B), and an organic solvent (C) having an SP value of 20 (J/cm3)1/2 to 30 (J/cm3)1/2 are dissolved and mixed together, and then causing the ethylene-vinyl alcohol copolymer (A) to precipitate as microparticles by bringing a poor solvent (D) of the ethylene-vinyl alcohol copolymer (A) into contact with the emulsion, it is possible to obtain ethylene-vinyl alcohol copolymer microparticles that have a narrow particle size distribution wherein the particle size distribution index in a dry-powder state is 2 or less, have a true spherical particle shape, and exhibit excellent re-dispersibility into liquid.
Abstract:
A polysiloxane-polyalkylene glycol block copolymer is obtained by reacting a polysiloxane (A) having any functional group selected from a carboxylic anhydride group, a hydroxyl group, an epoxy group, a carboxyl group, and an amino group with a polyalkylene glycol (B) having any functional group selected from a carboxylic anhydride group, a hydroxyl group, a carboxyl group, an amino group, an epoxy group, a thiol group, and an isocyanate group, wherein a content of a structure derived from the polysiloxane (A) is 20% by mass or more and 90% by mass or less with respect to 100% by mass of the polysiloxane-polyalkylene glycol block copolymer.
Abstract:
Fine polymer particles made by a method include producing an emulsion in a liquid prepared by dissolving and mixing a polymer A and a polymer B in organic solvents in which a solution phase composed primarily of the polymer A and a solution phase composed primarily of the polymer B are formed as separate phases, wherein the solvents in the two phases resulting from the phase separation are substantially identical to each other, and contacting the emulsion with a poor solvent for the polymer A to precipitate the polymer A, wherein the particles have a glass transition point of 150° C. or more and 400° C. or less, an average particle diameter of 1 μm or more to 100 μm or less, and a particle diameter distribution index of the particles is 2 or less, wherein the polymer A is nonvinyl type polymer.
Abstract:
A method of producing polycarbonate-based polymer microparticles including forming an emulsion in a system in which a polycarbonate-based polymer (A), a polymer (B) different from the polycarbonate-based polymer (A) and an organic solvent (C) are dissolved and mixed together and which causes phase separation into two phases of a solution phase having the polycarbonate-based polymer (A) as its main component and a solution phase having the polymer (B) different from the polycarbonate-based polymer (a) as its main component, and contacting a poor solvent for the polycarbonate-based polymer (A) with the emulsion at a temperature of 80° C. or higher to thereby precipitate microparticles of the polycarbonate-based polymer (A).
Abstract:
Polyphenylene sulfide microparticles have a linseed oil absorption amount of 40 to 1,000 mL/100 g and a number average particle diameter of 1 to 200 μm. The porous PPS microparticles have a large specific surface area and therefore promote fusion of particles when molded into various molded bodies by applying thermal energy, thus enabling formation or molding of a coating layer of particles at a lower temperature in a shorter time. The porous PPS microparticles have a porous shape and therefore enable scattering light in multiple directions and suppression of specific reflection of reflected light in a specific direction, thus making it possible to impart shading effect and matte effect when added to a medium.
Abstract:
Conductive microparticles, each are composed of a polymer microparticle and a conductive layer formed by coating the surface of the polymer microparticle with a metal. The conductive microparticles have an elastic modulus (E) at 5% displacement of 1-100 MPa. Especially when the conductive microparticles have a shape recovery ratio (SR) of 0.1-13% under a load of 9.8 mN, a particle size distribution index of 1-3 and a particle size of 0.1-100 μm, the conductive microparticles can exhibit excellent conduction reliability in applications such as conductive adhesives for flexible boards.
Abstract:
A polymer powder includes a polyamide, wherein a melting point determined in differential scanning calorimetry is 190° C. or higher, a difference between the melting point and a melting onset temperature, which is defined in differential scanning calorimetry as a lowest temperature among temperatures at each of which a first temperature differential value of Heat Flow (W/g) observed between a peak top temperature of an endothermic peak, observed when 10 mg of powder is heated at a rate of 20° C./min from 30° C. in a nitrogen atmosphere, and a temperature point of −50° C. from the peak top, becomes −0.2 (W/g.° C.), is less than 30° C., and a D50 particle size is 1 μm or more and 100 μm or less.
Abstract:
A method of manufacturing a 3-dimensional model object by a powder bed fusion method using a resin granular material, in which the resin granular material comprises a resin powder (A) and a flow aid (B), a sphericity of the resin powder (A) is 80 or more and 100 or less, the resin powder (A) has a D80 particle size of 60 μm or less and a D20 particle size of 1 μm or more, the flow aid (B) is contained at an amount of more than 0.01 part by mass and less than 5 parts by mass with respect to 100 parts by mass of the resin powder (A), and steps (a) to (c) are performed in this order repeatedly.